These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 37543661)

  • 1. Machine learning for the development of diagnostic models of decompensated heart failure or exacerbation of chronic obstructive pulmonary disease.
    Gálvez-Barrón C; Pérez-López C; Villar-Álvarez F; Ribas J; Formiga F; Chivite D; Boixeda R; Iborra C; Rodríguez-Molinero A
    Sci Rep; 2023 Aug; 13(1):12709. PubMed ID: 37543661
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Exacerbations in Chronic Obstructive Pulmonary Disease: Identification and Prediction Using a Digital Health System.
    Shah SA; Velardo C; Farmer A; Tarassenko L
    J Med Internet Res; 2017 Mar; 19(3):e69. PubMed ID: 28270380
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Comparison of the predictive performance of Logistic regression, BP neural network and support vector machine model for the risk of acute exacerbation of readmission in elderly patients with chronic obstructive pulmonary disease within 30 days].
    Zhang R; Chang Y; Zhang X; Lu L; Ding L; Lu H
    Zhonghua Wei Zhong Bing Ji Jiu Yi Xue; 2022 Aug; 34(8):819-824. PubMed ID: 36177924
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Changes in Warfarin Sensitivity During Decompensated Heart Failure and Chronic Obstructive Pulmonary Disease.
    del Campo M; Roberts G
    Ann Pharmacother; 2015 Sep; 49(9):962-8. PubMed ID: 26104049
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Impact of β-blocker selectivity on long-term outcomes in congestive heart failure patients with chronic obstructive pulmonary disease.
    Kubota Y; Asai K; Furuse E; Nakamura S; Murai K; Tsukada YT; Shimizu W
    Int J Chron Obstruct Pulmon Dis; 2015; 10():515-23. PubMed ID: 25784798
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Intensive Care Unit Admission and Survival among Older Patients with Chronic Obstructive Pulmonary Disease, Heart Failure, or Myocardial Infarction.
    Valley TS; Sjoding MW; Ryan AM; Iwashyna TJ; Cooke CR
    Ann Am Thorac Soc; 2017 Jun; 14(6):943-951. PubMed ID: 28208030
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Impact of chronic obstructive pulmonary disease on readmission after hospitalization for acute heart failure: A nationally representative US cohort study.
    Gulea C; Zakeri R; Quint JK
    Int J Cardiol; 2019 Sep; 290():113-118. PubMed ID: 31101544
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effort Oxygen Saturation and Effort Heart Rate to Detect Exacerbations of Chronic Obstructive Pulmonary Disease or Congestive Heart Failure.
    Gálvez-Barrón C; Villar-Álvarez F; Ribas J; Formiga F; Chivite D; Boixeda R; Iborra C; Rodríguez-Molinero A
    J Clin Med; 2019 Jan; 8(1):. PubMed ID: 30621152
    [TBL] [Abstract][Full Text] [Related]  

  • 9. COPD patients hospitalized with exacerbations have greater cognitive impairment than patients hospitalized with decompensated heart failure.
    Bajaj MK; Burrage DR; Tappouni A; Dodd JW; Jones PW; Baker EH
    Clin Interv Aging; 2019; 14():1-8. PubMed ID: 30587948
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Diagnostic and Prognostic Markers of Chronic Heart Failure in Patients with Occupational Chronic Obstructive Pulmonary Disease].
    Shpagina LA; Kamneva NV; Kudelya LM; Kotova OS; Shpagin IS; Kuznetsova GV; Anikina EV; Gerasimenko DA; Saraskina LE; Surovenko TN; Ponomareva AV
    Kardiologiia; 2020 Aug; 60(7):44-52. PubMed ID: 33155940
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Improving Prediction of Risk of Hospital Admission in Chronic Obstructive Pulmonary Disease: Application of Machine Learning to Telemonitoring Data.
    Orchard P; Agakova A; Pinnock H; Burton CD; Sarran C; Agakov F; McKinstry B
    J Med Internet Res; 2018 Sep; 20(9):e263. PubMed ID: 30249589
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Differences in baseline factors and survival between normocapnia, compensated respiratory acidosis and decompensated respiratory acidosis in COPD exacerbation: A pilot study.
    Lun CT; Tsui MS; Cheng SL; Chan VL; Leung WS; Cheung AP; Chu CM
    Respirology; 2016 Jan; 21(1):128-36. PubMed ID: 26603971
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effectiveness of non-invasive positive pressure ventilation differs between decompensated chronic restrictive and obstructive pulmonary disease patients.
    Robino C; Faisy C; Diehl JL; Rezgui N; Labrousse J; Guerot E
    Intensive Care Med; 2003 Apr; 29(4):603-10. PubMed ID: 12589530
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Clinical characteristics, response to exercise training, and outcomes in patients with heart failure and chronic obstructive pulmonary disease: findings from Heart Failure and A Controlled Trial Investigating Outcomes of Exercise TraiNing (HF-ACTION).
    Mentz RJ; Schulte PJ; Fleg JL; Fiuzat M; Kraus WE; Piña IL; Keteyian SJ; Kitzman DW; Whellan DJ; Ellis SJ; O'Connor CM
    Am Heart J; 2013 Feb; 165(2):193-9. PubMed ID: 23351822
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Acute Exacerbation of a Chronic Obstructive Pulmonary Disease Prediction System Using Wearable Device Data, Machine Learning, and Deep Learning: Development and Cohort Study.
    Wu CT; Li GH; Huang CT; Cheng YC; Chen CH; Chien JY; Kuo PH; Kuo LC; Lai F
    JMIR Mhealth Uhealth; 2021 May; 9(5):e22591. PubMed ID: 33955840
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Using Machine Learning to Predict Likelihood and Cause of Readmission After Hospitalization for Chronic Obstructive Pulmonary Disease Exacerbation.
    Bonomo M; Hermsen MG; Kaskovich S; Hemmrich MJ; Rojas JC; Carey KA; Venable LR; Churpek MM; Press VG
    Int J Chron Obstruct Pulmon Dis; 2022; 17():2701-2709. PubMed ID: 36299799
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Novel Wearable Seismocardiography and Machine Learning Algorithms Can Assess Clinical Status of Heart Failure Patients.
    Inan OT; Baran Pouyan M; Javaid AQ; Dowling S; Etemadi M; Dorier A; Heller JA; Bicen AO; Roy S; De Marco T; Klein L
    Circ Heart Fail; 2018 Jan; 11(1):e004313. PubMed ID: 29330154
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Smooth Bayesian network model for the prediction of future high-cost patients with COPD.
    Lin S; Zhang Q; Chen F; Luo L; Chen L; Zhang W
    Int J Med Inform; 2019 Jun; 126():147-155. PubMed ID: 31029256
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Acutely decompensated heart failure: characteristics of hospitalized patients and opportunities to improve their care.
    Sarmento PM; Fonseca C; Marques F; Ceia F; Aleixo A
    Rev Port Cardiol; 2006 Jan; 25(1):13-27. PubMed ID: 16623353
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Machine Learning-Based Prediction Models for 30-Day Readmission after Hospitalization for Chronic Obstructive Pulmonary Disease.
    Goto T; Jo T; Matsui H; Fushimi K; Hayashi H; Yasunaga H
    COPD; 2019 Dec; 16(5-6):338-343. PubMed ID: 31709851
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.