These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 37543944)

  • 1. Protocol to perform dynamic microfluidic single-cell cultivation of C. glutamicum.
    Blöbaum L; Täuber S; Grünberger A
    STAR Protoc; 2023 Sep; 4(3):102436. PubMed ID: 37543944
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Quantification of growth and nutrient consumption of bacterial and fungal cultures in microfluidic microhabitat models.
    Arellano-Caicedo C; Beech JP; Bengtsson M; Ohlsson P; Hammer EC
    STAR Protoc; 2024 Mar; 5(1):102784. PubMed ID: 38103191
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Spatiotemporal microbial single-cell analysis using a high-throughput microfluidics cultivation platform.
    Grünberger A; Probst C; Helfrich S; Nanda A; Stute B; Wiechert W; von Lieres E; Nöh K; Frunzke J; Kohlheyer D
    Cytometry A; 2015 Dec; 87(12):1101-15. PubMed ID: 26348020
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Microfluidic picoliter bioreactor for microbial single-cell analysis: fabrication, system setup, and operation.
    Gruenberger A; Probst C; Heyer A; Wiechert W; Frunzke J; Kohlheyer D
    J Vis Exp; 2013 Dec; (82):50560. PubMed ID: 24336165
    [TBL] [Abstract][Full Text] [Related]  

  • 5. dMSCC: a microfluidic platform for microbial single-cell cultivation of
    Täuber S; Golze C; Ho P; von Lieres E; Grünberger A
    Lab Chip; 2020 Nov; 20(23):4442-4455. PubMed ID: 33095214
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Microfluidics and fluorescence microscopy protocol to study the response of C. elegans to chemosensory stimuli.
    Bruggeman CW; Haasnoot GH; Peterman EJG
    STAR Protoc; 2023 Mar; 4(1):102121. PubMed ID: 36853676
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Application of a genetically encoded biosensor for live cell imaging of L-valine production in pyruvate dehydrogenase complex-deficient Corynebacterium glutamicum strains.
    Mustafi N; Grünberger A; Mahr R; Helfrich S; Nöh K; Blombach B; Kohlheyer D; Frunzke J
    PLoS One; 2014; 9(1):e85731. PubMed ID: 24465669
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Microfluidic single-cell scale-down bioreactors: A proof-of-concept for the growth of Corynebacterium glutamicum at oscillating pH values.
    Täuber S; Blöbaum L; Steier V; Oldiges M; Grünberger A
    Biotechnol Bioeng; 2022 Nov; 119(11):3194-3209. PubMed ID: 35950295
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Microfluidic system for in vitro epithelial folding and calcium waves induction.
    Brun-Cosme-Bruny M; Pernet L; Blonski S; Zaremba D; Fraboulet S; Dolega ME
    STAR Protoc; 2022 Dec; 3(4):101683. PubMed ID: 36116075
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Quantitative modelling of nutrient-limited growth of bacterial colonies in microfluidic cultivation.
    Hornung R; Grünberger A; Westerwalbesloh C; Kohlheyer D; Gompper G; Elgeti J
    J R Soc Interface; 2018 Feb; 15(139):. PubMed ID: 29445038
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Protocol of living cell separation using the microfluidic dielectrophoresis integrated chip.
    Koba K; Yarimizu K; Fujiyoshi S; Oshiro K; Wakizaka Y; Takano M; Maruyama F
    STAR Protoc; 2022 Sep; 3(3):101527. PubMed ID: 35779257
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fabricating self-powered microfluidic devices via 3D printing for manipulating fluid flow.
    Woo SO; Oh M; Choi Y
    STAR Protoc; 2022 Jun; 3(2):101376. PubMed ID: 35573475
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Protocol to develop a microfluidic human corneal barrier-on-a-chip to evaluate the corneal epithelial wound repair process.
    Yu Z; Hao R; Chen X; Ma L; Zhang Y; Yang H
    STAR Protoc; 2023 Mar; 4(1):102122. PubMed ID: 36861830
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Beyond growth rate 0.6: What drives Corynebacterium glutamicum to higher growth rates in defined medium.
    Unthan S; Grünberger A; van Ooyen J; Gätgens J; Heinrich J; Paczia N; Wiechert W; Kohlheyer D; Noack S
    Biotechnol Bioeng; 2014 Feb; 111(2):359-71. PubMed ID: 23996851
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Process inhomogeneity leads to rapid side product turnover in cultivation of Corynebacterium glutamicum.
    Käß F; Junne S; Neubauer P; Wiechert W; Oldiges M
    Microb Cell Fact; 2014 Jan; 13():6. PubMed ID: 24410842
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characterizing circulating tumor cells using affinity-based microfluidic capture and AFM-based biomechanics.
    Deliorman M; Glia A; Qasaimeh MA
    STAR Protoc; 2022 Jun; 3(2):101433. PubMed ID: 35664257
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Experimental k
    Steinhoff H; Finger M; Osthege M; Golze C; Schito S; Noack S; Büchs J; Grünberger A
    Biotechnol Bioeng; 2023 May; 120(5):1288-1302. PubMed ID: 36740737
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A disposable picolitre bioreactor for cultivation and investigation of industrially relevant bacteria on the single cell level.
    Grünberger A; Paczia N; Probst C; Schendzielorz G; Eggeling L; Noack S; Wiechert W; Kohlheyer D
    Lab Chip; 2012 May; 12(11):2060-8. PubMed ID: 22511122
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Non-Invasive Microbial Metabolic Activity Sensing at Single Cell Level by Perfusion of Calcein Acetoxymethyl Ester.
    Krämer CE; Singh A; Helfrich S; Grünberger A; Wiechert W; Nöh K; Kohlheyer D
    PLoS One; 2015; 10(10):e0141768. PubMed ID: 26513257
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Production of 11α-Hydroxysteroid Derivatives by Corynebacterium glutamicum Expressing the Rhizopus oryzae Hydroxylating System.
    Galán B; Felpeto-Santero C; García JL
    Methods Mol Biol; 2023; 2704():277-289. PubMed ID: 37642851
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.