These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 37544036)

  • 1. Rapid detection of Mycobacterium bovis in bovine cytological smears and tissue sections by peptide nucleic acid fluorescence in-situ hybridization.
    Javed R; Narang D; Gupta K; Deshmukh S; Chandra M
    Vet Immunol Immunopathol; 2023 Aug; 262():110635. PubMed ID: 37544036
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Direct detection and identification of Mycobacterium tuberculosis and Mycobacterium bovis in bovine samples by a novel nested PCR assay: correlation with conventional techniques.
    Mishra A; Singhal A; Chauhan DS; Katoch VM; Srivastava K; Thakral SS; Bharadwaj SS; Sreenivas V; Prasad HK
    J Clin Microbiol; 2005 Nov; 43(11):5670-8. PubMed ID: 16272503
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dual color fluorescence in situ hybridization (FISH) assays for detecting Mycobacterium tuberculosis and Mycobacterium avium complexes and related pathogens in cultures.
    Shah J; Weltman H; Narciso P; Murphy C; Poruri A; Baliga S; Sharon L; York M; Cunningham G; Miller S; Caviedes L; Gilman R; Desmond E; Ramasamy R
    PLoS One; 2017; 12(4):e0174989. PubMed ID: 28399124
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evaluation of peptide nucleic acid-fluorescence in situ hybridization for identification of clinically relevant mycobacteria in clinical specimens and tissue sections.
    Lefmann M; Schweickert B; Buchholz P; Göbel UB; Ulrichs T; Seiler P; Theegarten D; Moter A
    J Clin Microbiol; 2006 Oct; 44(10):3760-7. PubMed ID: 17021106
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Development of a fluorescent microsphere-based multiplex assay for simultaneous rapid detection of Mycobacterium tuberculosis complex and differentiation of M. tuberculosis and M. bovis in clinical samples.
    Chen R; Bi Y; Yang G; Liu Z; Liu Z; Zeng B; Tong T
    Diagn Mol Pathol; 2010 Sep; 19(3):172-9. PubMed ID: 20736748
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Development of mycobacterial species-specific DNA probes by subtraction hybridization.
    Hughes MS; Beck LA; Skuce RA; Neill SD
    FEMS Microbiol Lett; 1997 Nov; 156(1):31-6. PubMed ID: 9368357
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Duplex PCR for differential identification of Mycobacterium bovis, M. avium, and M. avium subsp. paratuberculosis in formalin- fixed paraffin-embedded tissues from cattle.
    Coetsier C; Vannuffel P; Blondeel N; Denef JF; Cocito C; Gala JL
    J Clin Microbiol; 2000 Aug; 38(8):3048-54. PubMed ID: 10921976
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Direct detection and identification of Mycobacterium tuberculosis in smear-positive sputum samples by fluorescence in situ hybridization (FISH) using peptide nucleic acid (PNA) probes.
    Stender H; Mollerup TA; Lund K; Petersen KH; Hongmanee P; Godtfredsen SE
    Int J Tuberc Lung Dis; 1999 Sep; 3(9):830-7. PubMed ID: 10488893
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Identification of Mycobacterium species from BACTEC MGIT™ positive cultures with Oligo-FISH and PNA-FISH methods].
    Börekci G; Aslan G; Aydin E; Fiandaca MJ; Stender H; Lee NM; Özkul Y; Emekdaş G
    Mikrobiyol Bul; 2014 Jul; 48(3):385-401. PubMed ID: 25052105
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fluorescence In situ hybridization assay using peptide nucleic acid probes for differentiation between tuberculous and nontuberculous mycobacterium species in smears of mycobacterium cultures.
    Stender H; Lund K; Petersen KH; Rasmussen OF; Hongmanee P; Miörner H; Godtfredsen SE
    J Clin Microbiol; 1999 Sep; 37(9):2760-5. PubMed ID: 10449448
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Detection of Mycobacterium bovis in formalin-fixed, paraffin-embedded tissues of cattle and elk by PCR amplification of an IS6110 sequence specific for Mycobacterium tuberculosis complex organisms.
    Miller J; Jenny A; Rhyan J; Saari D; Suarez D
    J Vet Diagn Invest; 1997 Jul; 9(3):244-9. PubMed ID: 9249162
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Diagnosis of Mycobacterium bovis infection in calves sensitized by mycobacteria of the avium/intracellulare group.
    Amadori M; Tagliabue S; Lauzi S; Finazzi G; Lombardi G; Teló P; Pacciarini L; Bonizzi L
    J Vet Med B Infect Dis Vet Public Health; 2002 Mar; 49(2):89-96. PubMed ID: 12002425
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fluorescence in situ hybridization using peptide nucleic acid probes for rapid detection of Mycobacterium avium subsp. avium and Mycobacterium avium subsp. paratuberculosis in potable-water biofilms.
    Lehtola MJ; Torvinen E; Miettinen IT; Keevil CW
    Appl Environ Microbiol; 2006 Jan; 72(1):848-53. PubMed ID: 16391126
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Detection of Mycobacterium bovis in bovine clinical specimens using real-time fluorescence and fluorescence resonance energy transfer probe rapid-cycle PCR.
    Taylor MJ; Hughes MS; Skuce RA; Neill SD
    J Clin Microbiol; 2001 Apr; 39(4):1272-8. PubMed ID: 11283040
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Rapid method for detecting and differentiating Mycobacterium tuberculosis complex and non-tuberculous mycobacteria in sputum by fluorescence in situ hybridization with DNA probes.
    Baliga S; Murphy C; Sharon L; Shenoy S; Biranthabail D; Weltman H; Miller S; Ramasamy R; Shah J
    Int J Infect Dis; 2018 Oct; 75():1-7. PubMed ID: 30048818
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Detection and identification of Mycobacterium tuberculosis and Mycobacterium bovis from clinical species using DNA microarrays.
    Jia K; Yu M; Zhang GH; Zhang J; Lin ZX; Luo CB; Yu HQ; Li SJ
    J Vet Diagn Invest; 2012 Jan; 24(1):156-60. PubMed ID: 22362948
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evaluation of the single cervical skin test and interferon gamma responses to detect Mycobacterium bovis infected cattle in a herd co-infected with Mycobacterium avium subsp. paratuberculosis.
    Seva J; Sanes JM; Ramis G; Mas A; Quereda JJ; Villarreal-Ramos B; Villar D; Pallares FJ
    Vet Microbiol; 2014 Jun; 171(1-2):139-46. PubMed ID: 24794166
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evaluation of dual-color fluorescence in situ hybridization with peptide nucleic acid probes for the detection of Mycobacterium tuberculosis and non-tuberculous mycobacteria in clinical specimens.
    Kim N; Lee SH; Yi J; Chang CL
    Ann Lab Med; 2015 Sep; 35(5):500-5. PubMed ID: 26206686
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Rapid differentiation of Mycobacterium bovis and Mycobacterium tuberculosis based on a 12.7-kb fragment by a single tube multiplex-PCR.
    Bakshi CS; Shah DH; Verma R; Singh RK; Malik M
    Vet Microbiol; 2005 Aug; 109(3-4):211-6. PubMed ID: 16005166
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Use of recombinant ESAT-6:CFP-10 fusion protein for differentiation of infections of cattle by Mycobacterium bovis and by M. avium subsp. avium and M. avium subsp. paratuberculosis.
    Waters WR; Nonnecke BJ; Palmer MV; Robbe-Austermann S; Bannantine JP; Stabel JR; Whipple DL; Payeur JB; Estes DM; Pitzer JE; Minion FC
    Clin Diagn Lab Immunol; 2004 Jul; 11(4):729-35. PubMed ID: 15242948
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.