These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
163 related articles for article (PubMed ID: 37544054)
1. Variability in chewing, ruminal fermentation, digestibility and bacterial communities between subacute ruminal acidosis-susceptible and acidosis-tolerant sheep. Zhang ZA; Li F; Ma ZY; Li FD; Wang ZL; Li SR; Wang XJ; Li KD Animal; 2023 Aug; 17(8):100902. PubMed ID: 37544054 [TBL] [Abstract][Full Text] [Related]
2. Relationship of severity of subacute ruminal acidosis to rumen fermentation, chewing activities, sorting behavior, and milk production in lactating dairy cows fed a high-grain diet. Gao X; Oba M J Dairy Sci; 2014 May; 97(5):3006-16. PubMed ID: 24612805 [TBL] [Abstract][Full Text] [Related]
3. Effects of dietary forage neutral detergent fiber and rumen degradable starch ratios on chewing activity, ruminal fermentation, ruminal microbes and nutrient digestibility of Hu sheep fed a pelleted total mixed ration. Zhang Z; Wang L; Li Q; Li F; Ma Z; Li F; Wang Z; Chen L; Yang X; Wang X; Yang G J Anim Sci; 2024 Jan; 102():. PubMed ID: 38581217 [TBL] [Abstract][Full Text] [Related]
4. Distinct responses in feed sorting, chewing behavior, and ruminal acidosis risk between primiparous and multiparous Simmental cows fed diets differing in forage and starch levels. Stauder A; Humer E; Neubauer V; Reisinger N; Kaltenegger A; Zebeli Q J Dairy Sci; 2020 Sep; 103(9):8467-8481. PubMed ID: 32622591 [TBL] [Abstract][Full Text] [Related]
5. Active dry Saccharomyces cerevisiae can alleviate the effect of subacute ruminal acidosis in lactating dairy cows. AlZahal O; Dionissopoulos L; Laarman AH; Walker N; McBride BW J Dairy Sci; 2014 Dec; 97(12):7751-63. PubMed ID: 25282426 [TBL] [Abstract][Full Text] [Related]
6. Characteristics of dairy cows with a greater or lower risk of subacute ruminal acidosis: Volatile fatty acid absorption, rumen digestion, and expression of genes in rumen epithelial cells. Gao X; Oba M J Dairy Sci; 2016 Nov; 99(11):8733-8745. PubMed ID: 27638257 [TBL] [Abstract][Full Text] [Related]
7. Elucidating the factors and consequences of the severity of rumen acidosis in first-lactation Holstein cows during transition and early lactation. Hartinger T; Castillo-Lopez E; Reisinger N; Zebeli Q J Anim Sci; 2024 Jan; 102():. PubMed ID: 38364366 [TBL] [Abstract][Full Text] [Related]
8. Changes in ruminal and reticular pH and bacterial communities in Holstein cattle fed a high-grain diet. Kim YH; Nagata R; Ohkubo A; Ohtani N; Kushibiki S; Ichijo T; Sato S BMC Vet Res; 2018 Oct; 14(1):310. PubMed ID: 30314483 [TBL] [Abstract][Full Text] [Related]
10. Effects of repeated subacute ruminal acidosis challenges on the adaptation of the rumen bacterial community in Holstein bulls. Nagata R; Kim YH; Ohkubo A; Kushibiki S; Ichijo T; Sato S J Dairy Sci; 2018 May; 101(5):4424-4436. PubMed ID: 29477528 [TBL] [Abstract][Full Text] [Related]
11. Subacute ruminal acidosis challenge changed in situ degradability of feedstuffs in dairy goats. Li F; Cao Y; Liu N; Yang X; Yao J; Yan D J Dairy Sci; 2014; 97(8):5101-9. PubMed ID: 24913652 [TBL] [Abstract][Full Text] [Related]
12. Short-term screening of multiple phytogenic compounds for their potential to modulate chewing behavior, ruminal fermentation profile, and pH in cattle fed grain-rich diets. Castillo-Lopez E; Rivera-Chacon R; Ricci S; Petri RM; Reisinger N; Zebeli Q J Dairy Sci; 2021 Apr; 104(4):4271-4289. PubMed ID: 33612222 [TBL] [Abstract][Full Text] [Related]
13. Relationship between thiamine and subacute ruminal acidosis induced by a high-grain diet in dairy cows. Pan XH; Yang L; Xue FG; Xin HR; Jiang LS; Xiong BH; Beckers Y J Dairy Sci; 2016 Nov; 99(11):8790-8801. PubMed ID: 27568043 [TBL] [Abstract][Full Text] [Related]
14. Changes in rumen fermentation and bacterial community in lactating dairy cows with subacute rumen acidosis following rumen content transplantation. Mu YY; Qi WP; Zhang T; Zhang JY; Mei SJ; Mao SY J Dairy Sci; 2021 Oct; 104(10):10780-10795. PubMed ID: 34253359 [TBL] [Abstract][Full Text] [Related]
15. Intramammary infusion of Escherichia coli lipopolysaccharide negatively affects feed intake, chewing, and clinical variables, but some effects are stronger in cows experiencing subacute rumen acidosis. Aditya S; Humer E; Pourazad P; Khiaosa-Ard R; Huber J; Zebeli Q J Dairy Sci; 2017 Feb; 100(2):1363-1377. PubMed ID: 27939552 [TBL] [Abstract][Full Text] [Related]
16. Ruminal cellulolytic bacteria abundance leads to the variation in fatty acids in the rumen digesta and meat of fattening lambs. Zhang Z; Niu X; Li F; Li F; Guo L J Anim Sci; 2020 Jul; 98(7):. PubMed ID: 32687154 [TBL] [Abstract][Full Text] [Related]
17. Epimural bacterial community structure in the rumen of Holstein cows with different responses to a long-term subacute ruminal acidosis diet challenge. Wetzels SU; Mann E; Pourazad P; Qumar M; Pinior B; Metzler-Zebeli BU; Wagner M; Schmitz-Esser S; Zebeli Q J Dairy Sci; 2017 Mar; 100(3):1829-1844. PubMed ID: 28041738 [TBL] [Abstract][Full Text] [Related]
18. Peripartal changes in reticuloruminal pH and temperature in dairy cows differing in the susceptibility to subacute rumen acidosis. Humer E; Ghareeb K; Harder H; Mickdam E; Khol-Parisini A; Zebeli Q J Dairy Sci; 2015 Dec; 98(12):8788-99. PubMed ID: 26433416 [TBL] [Abstract][Full Text] [Related]
19. Subacute ruminal acidosis phenotypes in periparturient dairy cows differ in ruminal and salivary bacteria and in the in vitro fermentative activity of their ruminal microbiota. Yang H; Heirbaut S; Jeyanathan J; Jing XP; De Neve N; Vandaele L; Fievez V J Dairy Sci; 2022 May; 105(5):3969-3987. PubMed ID: 35221057 [TBL] [Abstract][Full Text] [Related]
20. Models to predict the risk of subacute ruminal acidosis in dairy cows based on dietary and cow factors: A meta-analysis. Khorrami B; Khiaosa-Ard R; Zebeli Q J Dairy Sci; 2021 Jul; 104(7):7761-7780. PubMed ID: 33838889 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]