These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 37544270)

  • 41. Electron vortex beams prepared by a spiral aperture with the goal to measure EMCD on ferromagnetic films via STEM.
    Pohl D; Schneider S; Rusz J; Rellinghaus B
    Ultramicroscopy; 2015 Mar; 150():16-22. PubMed ID: 25497492
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Simulating the oxygen K-edge spectrum from grain boundaries in ceramic oxides using the multiple scattering methodology.
    Moltaji HO; Buban JP; Zaborac JA; Browning ND
    Micron; 2000 Aug; 31(4):381-99. PubMed ID: 10741609
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Nanoscale EELS analysis of dielectric function and bandgap properties in gaN and related materials.
    Brockt G; Lakner H
    Micron; 2000 Aug; 31(4):435-40. PubMed ID: 10741613
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Nanoscale Multimodal Analysis of Sensitive Nanomaterials by Monochromated STEM-EELS in Low-Dose and Cryogenic Conditions.
    Chaupard M; Degrouard J; Li X; Stéphan O; Kociak M; Gref R; de Frutos M
    ACS Nano; 2023 Feb; 17(4):3452-3464. PubMed ID: 36745677
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Nanoscale Investigation of Local Thermal Expansion at SrTiO
    Liao K; Shibata K; Mizoguchi T
    Nano Lett; 2021 Dec; 21(24):10416-10422. PubMed ID: 34854692
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Decisive factors for realizing atomic-column resolution using STEM and EELS.
    Kimoto K; Ishizuka K; Matsui Y
    Micron; 2008; 39(3):257-62. PubMed ID: 18054240
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Decisive factors for realizing atomic-column resolution using STEM and EELS .
    Kimoto K; Ishizuka K; Matsui Y
    Micron; 2008 Aug; 39(6):653-7. PubMed ID: 18788098
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Probing low-energy hyperbolic polaritons in van der Waals crystals with an electron microscope.
    Govyadinov AA; Konečná A; Chuvilin A; Vélez S; Dolado I; Nikitin AY; Lopatin S; Casanova F; Hueso LE; Aizpurua J; Hillenbrand R
    Nat Commun; 2017 Jul; 8(1):95. PubMed ID: 28733660
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Role of Convergence and Collection Angles in the Excitation of Long- and Short-Wavelength Phonons with Vibrational Electron Energy-Loss Spectroscopy.
    Venkatraman K; Crozier PA
    Microsc Microanal; 2021 Jun; ():1-9. PubMed ID: 34172104
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Development of Electron Energy Loss Spectroscopy in the Biological Sciences.
    Aronova MA; Leapman RD
    MRS Bull; 2012 Jan; 37(1):53-62. PubMed ID: 23049161
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Fast reconstruction of atomic-scale STEM-EELS images from sparse sampling.
    Monier E; Oberlin T; Brun N; Li X; Tencé M; Dobigeon N
    Ultramicroscopy; 2020 Aug; 215():112993. PubMed ID: 32516700
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Monochromated STEM with a 30 meV-wide, atom-sized electron probe.
    Krivanek OL; Lovejoy TC; Dellby N; Carpenter RW
    Microscopy (Oxf); 2013 Feb; 62(1):3-21. PubMed ID: 23335810
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Limits to the spatial, energy and momentum resolution of electron energy-loss spectroscopy.
    Egerton RF
    Ultramicroscopy; 2007 Aug; 107(8):575-86. PubMed ID: 17257759
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Patterned probes for high precision 4D-STEM bragg measurements.
    Zeltmann SE; Müller A; Bustillo KC; Savitzky B; Hughes L; Minor AM; Ophus C
    Ultramicroscopy; 2020 Feb; 209():112890. PubMed ID: 31743883
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Detection of magnetic circular dichroism using a transmission electron microscope.
    Schattschneider P; Rubino S; Hébert C; Rusz J; Kunes J; Novák P; Carlino E; Fabrizioli M; Panaccione G; Rossi G
    Nature; 2006 May; 441(7092):486-8. PubMed ID: 16724061
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Atom size electron vortex beams with selectable orbital angular momentum.
    Pohl D; Schneider S; Zeiger P; Rusz J; Tiemeijer P; Lazar S; Nielsch K; Rellinghaus B
    Sci Rep; 2017 Apr; 7(1):934. PubMed ID: 28424470
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Material structure, properties, and dynamics through scanning transmission electron microscopy.
    Pennycook SJ; Li C; Li M; Tang C; Okunishi E; Varela M; Kim YM; Jang JH
    J Anal Sci Technol; 2018; 9(1):11. PubMed ID: 31258949
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Design for a high resolution electron energy loss microscope.
    Mankos M; Shadman K; Hahn R; Picard YJ; Comparat D; Fedchenko O; Schönhense G; Amiaud L; Lafosse A; Barrett N
    Ultramicroscopy; 2019 Dec; 207():112848. PubMed ID: 31606484
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Four-Dimensional Ultrafast Electron Microscopy: Insights into an Emerging Technique.
    Adhikari A; Eliason JK; Sun J; Bose R; Flannigan DJ; Mohammed OF
    ACS Appl Mater Interfaces; 2017 Jan; 9(1):3-16. PubMed ID: 27976852
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Atomic-resolution electron energy loss spectroscopy imaging in aberration corrected scanning transmission electron microscopy.
    Allen LJ; Findlay SD; Lupini AR; Oxley MP; Pennycook SJ
    Phys Rev Lett; 2003 Sep; 91(10):105503. PubMed ID: 14525490
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.