BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 37544500)

  • 1. A two-galectin network establishes mesenchymal condensation phenotype in limb development.
    Glimm T; Kaźmierczak B; Newman SA; Bhat R
    Math Biosci; 2023 Nov; 365():109054. PubMed ID: 37544500
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A regulatory network of two galectins mediates the earliest steps of avian limb skeletal morphogenesis.
    Bhat R; Lerea KM; Peng H; Kaltner H; Gabius HJ; Newman SA
    BMC Dev Biol; 2011 Feb; 11():6. PubMed ID: 21284876
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Synchronization of Hes1 oscillations coordinates and refines condensation formation and patterning of the avian limb skeleton.
    Bhat R; Glimm T; Linde-Medina M; Cui C; Newman SA
    Mech Dev; 2019 Apr; 156():41-54. PubMed ID: 30867133
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Modeling the morphodynamic galectin patterning network of the developing avian limb skeleton.
    Glimm T; Bhat R; Newman SA
    J Theor Biol; 2014 Apr; 346():86-108. PubMed ID: 24355216
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Functional analysis of fibronectin isoforms in chondrogenesis: Full-length recombinant mesenchymal fibronectin reduces spreading and promotes condensation and chondrogenesis of limb mesenchymal cells.
    White DG; Hershey HP; Moss JJ; Daniels H; Tuan RS; Bennett VD
    Differentiation; 2003 Jun; 71(4-5):251-61. PubMed ID: 12823226
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Analysis of N-cadherin function in limb mesenchymal chondrogenesis in vitro.
    Delise AM; Tuan RS
    Dev Dyn; 2002 Oct; 225(2):195-204. PubMed ID: 12242719
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Limb bud and flank mesoderm have distinct "physical phenotypes" that may contribute to limb budding.
    Damon BJ; Mezentseva NV; Kumaratilake JS; Forgacs G; Newman SA
    Dev Biol; 2008 Sep; 321(2):319-30. PubMed ID: 18601915
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Interactive cellular modulation of chondrogenic differentiation in vitro by subpopulations of chick embryonic calvarial cells.
    Wong M; Tuan RS
    Dev Biol; 1995 Jan; 167(1):130-47. PubMed ID: 7851637
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Normal skeletal pattern formation in chick limb bud with a mesenchymal hole is mediated by adjustment of cellular properties along the anterior-posterior axis in the limb bud.
    Sato Y; Fujiwara M; Nishino H; Harada R; Kawasaki E; Morimoto R; Ohgo S; Wada N
    Dev Biol; 2022 Mar; 483():76-88. PubMed ID: 34973174
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Spatiotemporal profile of N-cadherin expression in the developing limb mesenchyme.
    Oberlender SA; Tuan RS
    Cell Adhes Commun; 1994 Dec; 2(6):521-37. PubMed ID: 7743138
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Deep phylogenomics of a tandem-repeat galectin regulating appendicular skeletal pattern formation.
    Bhat R; Chakraborty M; Glimm T; Stewart TA; Newman SA
    BMC Evol Biol; 2016 Aug; 16(1):162. PubMed ID: 27538950
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Frizzled-7 and limb mesenchymal chondrogenesis: effect of misexpression and involvement of N-cadherin.
    Tufan AC; Daumer KM; Tuan RS
    Dev Dyn; 2002 Mar; 223(2):241-53. PubMed ID: 11836788
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Endogenous galectins and effect of galectin hapten inhibitors on the differentiation of the chick mesonephros.
    Murphy KM; Zalik SE
    Dev Dyn; 1999 Jul; 215(3):248-63. PubMed ID: 10398535
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Spatial waves and temporal oscillations in vertebrate limb development.
    Newman SA; Bhat R; Glimm T
    Biosystems; 2021 Oct; 208():104502. PubMed ID: 34364929
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cyclic AMP derivatives stimulate the chondrogenic differentiation of the mesoderm subjacent to the apical ectodermal ridge of the chick limb bud.
    Kosher RA; Savage MP; Chan SC
    J Exp Zool; 1979 Aug; 209(2):221-7. PubMed ID: 229192
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bone morphogenetic protein regulation of forkhead/winged helix transcription factor Foxc2 (Mfh1) in a murine mesodermal cell line C1 and in skeletal precursor cells.
    Nifuji A; Miura N; Kato N; Kellermann O; Noda M
    J Bone Miner Res; 2001 Oct; 16(10):1765-71. PubMed ID: 11585339
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Leg bud mesoderm retains morphogenetic potential to express limb-like characteristics ("limbness") in collagen gel culture.
    Isokawa K; Krug EL; Fallon JF; Markwald RR
    Dev Dyn; 1992 Apr; 193(4):314-24. PubMed ID: 1511171
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hensen's node provides an endogenous limb-forming signal.
    Dealy CN
    Dev Biol; 1997 Aug; 188(2):216-23. PubMed ID: 9268570
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Expression of the chicken homeobox-containing gene GHox-8 during embryonic chick limb development.
    Coelho CN; Sumoy L; Rodgers BJ; Davidson DR; Hill RE; Upholt WB; Kosher RA
    Mech Dev; 1991 Jun; 34(2-3):143-54. PubMed ID: 1680378
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hyaluronan in limb morphogenesis.
    Li Y; Toole BP; Dealy CN; Kosher RA
    Dev Biol; 2007 May; 305(2):411-20. PubMed ID: 17362908
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.