BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

437 related articles for article (PubMed ID: 37544540)

  • 21. Cultivating microalgae in wastewater for biomass production, pollutant removal, and atmospheric carbon mitigation; a review.
    Shahid A; Malik S; Zhu H; Xu J; Nawaz MZ; Nawaz S; Asraful Alam M; Mehmood MA
    Sci Total Environ; 2020 Feb; 704():135303. PubMed ID: 31818584
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A biorefinery for valorization of industrial waste-water and flue gas by microalgae for waste mitigation, carbon-dioxide sequestration and algal biomass production.
    Yadav G; Dash SK; Sen R
    Sci Total Environ; 2019 Oct; 688():129-135. PubMed ID: 31229810
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Biorefineries in circular bioeconomy: A comprehensive review.
    Ubando AT; Felix CB; Chen WH
    Bioresour Technol; 2020 Mar; 299():122585. PubMed ID: 31901305
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Dark fermentation and microalgae cultivation coupled systems: Outlook and challenges.
    Lacroux J; Llamas M; Dauptain K; Avila R; Steyer JP; van Lis R; Trably E
    Sci Total Environ; 2023 Mar; 865():161136. PubMed ID: 36587699
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Mexican Microalgae Biodiversity and State-Of-The-Art Extraction Strategies to Meet Sustainable Circular Economy Challenges: High-Value Compounds and Their Applied Perspectives.
    Sosa-Hernández JE; Romero-Castillo KD; Parra-Arroyo L; Aguilar-Aguila-Isaías MA; García-Reyes IE; Ahmed I; Parra-Saldivar R; Bilal M; Iqbal HMN
    Mar Drugs; 2019 Mar; 17(3):. PubMed ID: 30889823
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Circular economy approaches for the production of high-value polysaccharides from microalgal biomass grown on industrial fish processing wastewater: A review.
    Rifna EJ; Rajauria G; Dwivedi M; Tiwari BK
    Int J Biol Macromol; 2024 Jan; 254(Pt 3):126887. PubMed ID: 37709230
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Potential applications of microalgae-bacteria consortia in wastewater treatment and biorefinery.
    Dai C; Wang F
    Bioresour Technol; 2024 Feb; 393():130019. PubMed ID: 38000638
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Wastewater-based microalgal biorefineries for the production of astaxanthin and co-products: Current status, challenges and future perspectives.
    Nishshanka GKSH; Liyanaarachchi VC; Premaratne M; Nimarshana PHV; Ariyadasa TU; Kornaros M
    Bioresour Technol; 2021 Dec; 342():126018. PubMed ID: 34571169
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Advancement on mixed microalgal-bacterial cultivation systems for nitrogen and phosphorus recoveries from wastewater to promote sustainable bioeconomy.
    Janpum C; Pombubpa N; Monshupanee T; Incharoensakdi A; In-Na P
    J Biotechnol; 2022 Dec; 360():198-210. PubMed ID: 36414126
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A review on co-culturing of microalgae: A greener strategy towards sustainable biofuels production.
    Ray A; Nayak M; Ghosh A
    Sci Total Environ; 2022 Jan; 802():149765. PubMed ID: 34454141
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Enhanced sustainable integration of CO
    Chen J; Dai L; Mataya D; Cobb K; Chen P; Ruan R
    Bioresour Technol; 2022 Dec; 366():128188. PubMed ID: 36309175
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Integrated role of algae in the closed-loop circular economy of anaerobic digestion.
    Leong YK; Chang JS
    Bioresour Technol; 2022 Sep; 360():127618. PubMed ID: 35840031
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Bio-products from algae-based biorefinery on wastewater: A review.
    Catone CM; Ripa M; Geremia E; Ulgiati S
    J Environ Manage; 2021 Sep; 293():112792. PubMed ID: 34058450
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Microalgae as a solution of third world energy crisis for biofuels production from wastewater toward carbon neutrality: An updated review.
    Li S; Li X; Ho SH
    Chemosphere; 2022 Mar; 291(Pt 1):132863. PubMed ID: 34774903
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Potential use of algae for the bioremediation of different types of wastewater and contaminants: Production of bioproducts and biofuel for green circular economy.
    Alazaiza MYD; Albahnasawi A; Ahmad Z; Bashir MJK; Al-Wahaibi T; Abujazar MSS; Abu Amr SS; Nassani DE
    J Environ Manage; 2022 Dec; 324():116415. PubMed ID: 36206653
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Biosynthesis of microalgal lipids, proteins, lutein, and carbohydrates using fish farming wastewater and forest biomass under photoautotrophic and heterotrophic cultivation.
    Vyas S; Patel A; Nabil Risse E; Krikigianni E; Rova U; Christakopoulos P; Matsakas L
    Bioresour Technol; 2022 Sep; 359():127494. PubMed ID: 35724910
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Microalgal remediation and valorisation of polluted wastewaters for zero-carbon circular bioeconomy.
    Goveas LC; Nayak S; Vinayagam R; Loke Show P; Selvaraj R
    Bioresour Technol; 2022 Dec; 365():128169. PubMed ID: 36283661
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Dual purpose microalgae-bacteria-based systems that treat wastewater and produce biodiesel and chemical products within a biorefinery.
    Olguín EJ
    Biotechnol Adv; 2012; 30(5):1031-46. PubMed ID: 22609182
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Microalgae starch: A promising raw material for the bioethanol production.
    Maia JLD; Cardoso JS; Mastrantonio DJDS; Bierhals CK; Moreira JB; Costa JAV; Morais MG
    Int J Biol Macromol; 2020 Dec; 165(Pt B):2739-2749. PubMed ID: 33470200
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Cyanobacterial biorefinery: Towards economic feasibility through the maximum valorization of biomass.
    Prabha S; Vijay AK; Paul RR; George B
    Sci Total Environ; 2022 Mar; 814():152795. PubMed ID: 34979226
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 22.