These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. Microalgal multiomics-based approaches in bioremediation of hazardous contaminants. Kumar N; Shukla P Environ Res; 2024 Apr; 247():118135. PubMed ID: 38218523 [TBL] [Abstract][Full Text] [Related]
4. Microalgae-based livestock wastewater treatment (MbWT) as a circular bioeconomy approach: Enhancement of biomass productivity, pollutant removal and high-value compound production. López-Sánchez A; Silva-Gálvez AL; Aguilar-Juárez Ó; Senés-Guerrero C; Orozco-Nunnelly DA; Carrillo-Nieves D; Gradilla-Hernández MS J Environ Manage; 2022 Apr; 308():114612. PubMed ID: 35149401 [TBL] [Abstract][Full Text] [Related]
5. Potential use of algae for the bioremediation of different types of wastewater and contaminants: Production of bioproducts and biofuel for green circular economy. Alazaiza MYD; Albahnasawi A; Ahmad Z; Bashir MJK; Al-Wahaibi T; Abujazar MSS; Abu Amr SS; Nassani DE J Environ Manage; 2022 Dec; 324():116415. PubMed ID: 36206653 [TBL] [Abstract][Full Text] [Related]
6. Omics approaches for microalgal applications: Prospects and challenges. Mishra A; Medhi K; Malaviya P; Thakur IS Bioresour Technol; 2019 Nov; 291():121890. PubMed ID: 31378447 [TBL] [Abstract][Full Text] [Related]
7. Resource recovery through bioremediation of wastewaters and waste carbon by microalgae: a circular bioeconomy approach. Ummalyma SB; Sahoo D; Pandey A Environ Sci Pollut Res Int; 2021 Nov; 28(42):58837-58856. PubMed ID: 33527238 [TBL] [Abstract][Full Text] [Related]
8. Critical processes and variables in microalgae biomass production coupled with bioremediation of nutrients and CO Lu W; Asraful Alam M; Liu S; Xu J; Parra Saldivar R Sci Total Environ; 2020 May; 716():135247. PubMed ID: 31839294 [TBL] [Abstract][Full Text] [Related]
9. Insights into the potential impact of algae-mediated wastewater beneficiation for the circular bioeconomy: A global perspective. Renuka N; Ratha SK; Kader F; Rawat I; Bux F J Environ Manage; 2021 Nov; 297():113257. PubMed ID: 34303940 [TBL] [Abstract][Full Text] [Related]
10. Microalgae systems - environmental agents for wastewater treatment and further potential biomass valorisation. Amaro HM; Salgado EM; Nunes OC; Pires JCM; Esteves AF J Environ Manage; 2023 Jul; 337():117678. PubMed ID: 36948147 [TBL] [Abstract][Full Text] [Related]
11. Enhancing microalgal photosynthesis and productivity in wastewater treatment high rate algal ponds for biofuel production. Sutherland DL; Howard-Williams C; Turnbull MH; Broady PA; Craggs RJ Bioresour Technol; 2015 May; 184():222-229. PubMed ID: 25453429 [TBL] [Abstract][Full Text] [Related]
12. Microalgal-based removal of contaminants of emerging concern. Sousa H; Sousa CA; Simões LC; Simões M J Hazard Mater; 2022 Feb; 423(Pt B):127153. PubMed ID: 34543999 [TBL] [Abstract][Full Text] [Related]
13. Sustainable microalgal biomass production in food industry wastewater for low-cost biorefinery products: a review. Ummalyma SB; Sirohi R; Udayan A; Yadav P; Raj A; Sim SJ; Pandey A Phytochem Rev; 2022 Apr; ():1-23. PubMed ID: 35431709 [TBL] [Abstract][Full Text] [Related]
14. Artificial intelligence and machine learning tools for high-performance microalgal wastewater treatment and algal biorefinery: A critical review. Oruganti RK; Biji AP; Lanuyanger T; Show PL; Sriariyanun M; Upadhyayula VKK; Gadhamshetty V; Bhattacharyya D Sci Total Environ; 2023 Jun; 876():162797. PubMed ID: 36907394 [TBL] [Abstract][Full Text] [Related]
15. Wastewater-leachate treatment by microalgae: Biomass, carbohydrate and lipid production. Hernández-García A; Velásquez-Orta SB; Novelo E; Yáñez-Noguez I; Monje-Ramírez I; Orta Ledesma MT Ecotoxicol Environ Saf; 2019 Jun; 174():435-444. PubMed ID: 30852308 [TBL] [Abstract][Full Text] [Related]
16. Sustainable microalgal cultivation in poultry slaughterhouse wastewater for biorefinery products and pollutant removal. Ummalyma SB; Chiang A; Herojit N; Arumugam M Bioresour Technol; 2023 Apr; 374():128790. PubMed ID: 36842508 [TBL] [Abstract][Full Text] [Related]
17. Can Omics Approaches Improve Microalgal Biofuels under Abiotic Stress? Salama ES; Govindwar SP; Khandare RV; Roh HS; Jeon BH; Li X Trends Plant Sci; 2019 Jul; 24(7):611-624. PubMed ID: 31085124 [TBL] [Abstract][Full Text] [Related]
18. Impact of various microalgal-bacterial populations on municipal wastewater bioremediation and its energy feasibility for lipid-based biofuel production. Leong WH; Azella Zaine SN; Ho YC; Uemura Y; Lam MK; Khoo KS; Kiatkittipong W; Cheng CK; Show PL; Lim JW J Environ Manage; 2019 Nov; 249():109384. PubMed ID: 31419674 [TBL] [Abstract][Full Text] [Related]
19. A state of the art review on the co-cultivation of microalgae-fungi in wastewater for biofuel production. Satpati GG; Dikshit PK; Mal N; Pal R; Sherpa KC; Rajak RC; Rather SU; Raghunathan S; Davoodbasha M Sci Total Environ; 2023 Apr; 870():161828. PubMed ID: 36707000 [TBL] [Abstract][Full Text] [Related]
20. Growth and nitrogen removal capacity of Desmodesmus communis and of a natural microalgae consortium in a batch culture system in view of urban wastewater treatment: part I. Samorì G; Samorì C; Guerrini F; Pistocchi R Water Res; 2013 Feb; 47(2):791-801. PubMed ID: 23211134 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]