These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
199 related articles for article (PubMed ID: 37544562)
1. The structural properties and resistant digestibility of maize starch-glyceride monostearate complexes. Wang C; Zhu Z; Mei L; Xia Y; Chen X; Mustafa S; Du X Int J Biol Macromol; 2023 Sep; 249():126141. PubMed ID: 37544562 [TBL] [Abstract][Full Text] [Related]
2. Effects of amylose content and enzymatic debranching on the properties of maize starch-glycerol monolaurate complexes. Liu P; Kang X; Cui B; Gao W; Wu Z; Yu B Carbohydr Polym; 2019 Oct; 222():115000. PubMed ID: 31320061 [TBL] [Abstract][Full Text] [Related]
3. Effects of pullulanase pretreatment on the structural properties and digestibility of lotus seed starch-glycerin monostearin complexes. Zheng Y; Ou Y; Zhang Y; Zheng B; Zeng S; Zeng H Carbohydr Polym; 2020 Jul; 240():116324. PubMed ID: 32475584 [TBL] [Abstract][Full Text] [Related]
4. Effects of freeze-thaw treatment and pullulanase debranching on the structural properties and digestibility of lotus seed starch-glycerin monostearin complexes. Tu D; Ou Y; Zheng Y; Zhang Y; Zheng B; Zeng H Int J Biol Macromol; 2021 Apr; 177():447-454. PubMed ID: 33636260 [TBL] [Abstract][Full Text] [Related]
5. Impacts of fatty acid type on binding state, fine structure, and in vitro digestion of debranched starch-fatty acid complexes with different debranching degrees. Sun S; Hong Y; Gu Z; Cheng L; Ban X; Li Z; Li C Carbohydr Polym; 2023 Oct; 318():121107. PubMed ID: 37479452 [TBL] [Abstract][Full Text] [Related]
6. Structure and in vitro digestibility of amylose-lipid complexes formed by an extrusion-debranching-complexing strategy. Liu Q; Guan H; Guo Y; Wang D; Yang Y; Ji H; Jiao A; Jin Z Food Chem; 2024 Mar; 437(Pt 2):137950. PubMed ID: 37952395 [TBL] [Abstract][Full Text] [Related]
7. Multi-scale structural characteristics of black Tartary buckwheat resistant starch by autoclaving combined with debranching modification. Zheng F; Xu Q; Zeng S; Zhao Z; Xing Y; Chen J; Zhang P Int J Biol Macromol; 2023 Sep; 249():126102. PubMed ID: 37541464 [TBL] [Abstract][Full Text] [Related]
8. Debranching facilitates malate esterification of waxy maize starch and decreases the digestibility. Yan Y; An H; Liu Y; Ji X; Shi M; Niu B Int J Biol Macromol; 2023 Jul; 242(Pt 3):125056. PubMed ID: 37245772 [TBL] [Abstract][Full Text] [Related]
9. Structural changes and digestibility of waxy maize starch debranched by different levels of pullulanase. Shi J; Sweedman MC; Shi YC Carbohydr Polym; 2018 Aug; 194():350-356. PubMed ID: 29801849 [TBL] [Abstract][Full Text] [Related]
10. Exploring the formation mechanism of resistant starch (RS3) prepared from high amylose maize starch by hydrothermal-alkali combined with ultrasonic treatment. Han S; Hu Y; Li C; Yu Y; Wang Y; Gu Z; Hao Z; Xiao Y; Liu Y; Liu K; Zheng M; Du Y; Zhou Y; Yu Z Int J Biol Macromol; 2024 Feb; 258(Pt 1):128938. PubMed ID: 38143061 [TBL] [Abstract][Full Text] [Related]
11. Structural and physicochemical properties of resistant starch under combined treatments of ultrasound, microwave, and enzyme. Wang M; Liu G; Li J; Wang W; Hu A; Zheng J Int J Biol Macromol; 2023 Mar; 232():123331. PubMed ID: 36682665 [TBL] [Abstract][Full Text] [Related]
12. Modification of sorghum starch as a function of pullulanase hydrolysis and infrared treatment. Semwal J; Meera MS Food Chem; 2023 Aug; 416():135815. PubMed ID: 36871507 [TBL] [Abstract][Full Text] [Related]
13. Digestibility and supramolecular structural changes of maize starch by non-covalent interactions with gallic acid. Chi C; Li X; Zhang Y; Chen L; Li L; Wang Z Food Funct; 2017 Feb; 8(2):720-730. PubMed ID: 28106222 [TBL] [Abstract][Full Text] [Related]
14. V-type granular starches prepared by maize starches with different amylose contents: An investigation in structure, physicochemical properties and digestibility. Lai S; Xie H; Hu H; Ouyang K; Li G; Zhong J; Hu X; Xiong H; Zhao Q Int J Biol Macromol; 2024 May; 266(Pt 2):131092. PubMed ID: 38527678 [TBL] [Abstract][Full Text] [Related]
15. Structural characterization of complexes prepared with glycerol monoestearate and maize starches with different amylose contents. Garcia MC; Pereira-da-Silva MA; Taboga S; Franco CM Carbohydr Polym; 2016 Sep; 148():371-9. PubMed ID: 27185151 [TBL] [Abstract][Full Text] [Related]
16. Resistant starch formation through intrahelical V-complexes between polymeric proanthocyanidins and amylose. Amoako DB; Awika JM Food Chem; 2019 Jul; 285():326-333. PubMed ID: 30797353 [TBL] [Abstract][Full Text] [Related]
17. Functionality of short chain amylose-lipid complexes in starch-water systems and their impact on in vitro starch degradation. Putseys JA; Derde LJ; Lamberts L; Ostman E; Björck IM; Delcour JA J Agric Food Chem; 2010 Feb; 58(3):1939-45. PubMed ID: 20039678 [TBL] [Abstract][Full Text] [Related]
18. Understanding the multi-scale structure and digestibility of different waxy maize starches. Xu J; Chen L; Guo X; Liang Y; Xie F Int J Biol Macromol; 2020 Feb; 144():252-258. PubMed ID: 31846664 [TBL] [Abstract][Full Text] [Related]
19. Amylose content controls the V-type structural formation and in vitro digestibility of maize starch-resveratrol complexes and their effect on human gut microbiota. Yang D; Guo Q; Li R; Chen L; Zheng B Carbohydr Polym; 2024 Mar; 327():121702. PubMed ID: 38171666 [TBL] [Abstract][Full Text] [Related]
20. Sub-high amylose maize starch: an ideal substrate to generate starch with lower digestibility by fermentation of Qu. Wu W; Tian W; Li Y; Zhao Q; Liu N; Huang C; Zhu L; Guo D J Sci Food Agric; 2024 Aug; 104(11):6855-6861. PubMed ID: 38578681 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]