These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 3754469)

  • 21. Anisotropic 2H-nuclear magnetic resonance spin-lattice relaxation in cerebroside- and phospholipid-cholesterol bilayer membranes.
    Siminovitch DJ; Ruocco MJ; Olejniczak ET; Das Gupta SK; Griffin RG
    Biophys J; 1988 Sep; 54(3):373-81. PubMed ID: 3207831
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Vesicle- vesicle interactions in sonicated dispersions of dipalmitoylphosphatidylcholine.
    Schmidt CF; Lichtenberg D; Thompson TE
    Biochemistry; 1981 Aug; 20(16):4792-7. PubMed ID: 6895312
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Headgroup conformation and lipid--cholesterol association in phosphatidylcholine vesicles: a 31P(1H) nuclear Overhauser effect study.
    Yeagle PL; Hutton WC; Huang CH; Martin RB
    Proc Natl Acad Sci U S A; 1975 Sep; 72(9):3477-81. PubMed ID: 1059134
    [TBL] [Abstract][Full Text] [Related]  

  • 24. 1H and 13C nuclear magnetic resonance studies of the hindered phencyclone adducts of some smaller branched N-alkyl maleimides: rigorous aryl proton assignments with high-resolution two-dimensional (COSY45) spectroscopy, and anisotropic shielding effects and ab initio geometry optimizations.
    Callahan R; Prip R; Shariff N; Sklyut O; Rothchild R; Bynum K
    Appl Spectrosc; 2005 Mar; 59(3):354-65. PubMed ID: 15901318
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Effect of surface modification on aggregation of phospholipid vesicles.
    Wu PS; Tin GW; Baldeschwieler JD; Shen TY; Ponpipom MM
    Proc Natl Acad Sci U S A; 1981 Oct; 78(10):6211-5. PubMed ID: 6947223
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Interactions of ubiquinones with membrane models.
    Boicelli CA; Casali E; Giomini M; Giuliani AM; Masotti L; Sartor G
    Ital J Biochem; 1985; 34(4):250-61. PubMed ID: 4055330
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Dynamics in atomistic simulations of phospholipid membranes: Nuclear magnetic resonance relaxation rates and lateral diffusion.
    Wohlert J; Edholm O
    J Chem Phys; 2006 Nov; 125(20):204703. PubMed ID: 17144719
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Protein-lipid interactions. A nuclear magnetic resonance study of sarcoplasmic reticulum Ca2,Mg2+-ATPase, lipophilin, and proteolipid apoprotein-lecithin systems and a comparison with the effects of cholesterol.
    Rice DM; Meadows MD; Scheinman AO; Goñi FM; Gómez-Fernández JC; Moscarello MA; Chapman D; Oldfield E
    Biochemistry; 1979 Dec; 18(26):5893-903. PubMed ID: 160247
    [TBL] [Abstract][Full Text] [Related]  

  • 29. NMR detection of lipid domains.
    Polozov IV; Gawrisch K
    Methods Mol Biol; 2007; 398():107-26. PubMed ID: 18214377
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The effect of surface curvature on the head-group structure and phase transition properties of phospholipid bilayer vesicles.
    Eigenberg KE; Chan SI
    Biochim Biophys Acta; 1980 Jun; 599(1):330-5. PubMed ID: 7397156
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Plasmenylcholine and phosphatidylcholine membrane bilayers possess distinct conformational motifs.
    Han XL; Gross RW
    Biochemistry; 1990 May; 29(20):4992-6. PubMed ID: 2364071
    [TBL] [Abstract][Full Text] [Related]  

  • 32. One and two dimensional 1H-NMR studies of pressure and tetracaine effects on sonicated phospholipid vesicles.
    Peng X; Jonas A; Jonas J
    Chem Phys Lipids; 1995 Jan; 75(1):59-69. PubMed ID: 7697783
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Study of phospholipid structure by 1H, 13C, and 31P dipolar couplings from two-dimensional NMR.
    Hong M; Schmidt-Rohr K; Nanz D
    Biophys J; 1995 Nov; 69(5):1939-50. PubMed ID: 8580337
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Melittin-induced changes in lipid multilayers. A solid-state NMR study.
    Smith R; Separovic F; Bennett FC; Cornell BA
    Biophys J; 1992 Aug; 63(2):469-74. PubMed ID: 1420892
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Water translational motion at the bilayer interface: an NMR relaxation dispersion measurement.
    Hodges MW; Cafiso DS; Polnaszek CF; Lester CC; Bryant RG
    Biophys J; 1997 Nov; 73(5):2575-9. PubMed ID: 9370451
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Intervesicular phospholipid exchange. An NMR study.
    Barsukov LI; Shapiro YE; Viktorov AV; Volkova VI; Bystrov VF; Bergelson LD
    Chem Phys Lipids; 1975 May; 14(3):211-26. PubMed ID: 165013
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Short-chain lecithin/long-chain phospholipid unilamellar vesicles: asymmetry, dynamics, and enzymatic hydrolysis of the short-chain component.
    Gabriel NE; Roberts MF
    Biochemistry; 1987 May; 26(9):2432-40. PubMed ID: 3607025
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Transmembrane asymmetry of vesicle lipids.
    Yeagle PL; Hutton WC; Martin RB
    J Biol Chem; 1976 Apr; 251(7):2110-12. PubMed ID: 1270423
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Proton NMR studies of vesicles incorporating glycophorin.
    Lau AL; Cowburn D
    Biophys Chem; 1981 Nov; 14(3):267-76. PubMed ID: 6895705
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Proton and carbon-13 nuclear magnetic resonance studies of the polar lipids of Halobacterium halobium.
    Degani H; Danon A; Caplan SR
    Biochemistry; 1980 Apr; 19(8):1626-31. PubMed ID: 6892882
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.