BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 37544831)

  • 1. Complex Transformer Network for Single-Angle Plane-Wave Imaging.
    Qu X; Ren C; Wang Z; Fan S; Zheng D; Wang S; Lin H; Jiang J; Xing W
    Ultrasound Med Biol; 2023 Oct; 49(10):2234-2246. PubMed ID: 37544831
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Reconstruction for plane-wave ultrasound imaging using modified U-Net-based beamformer.
    Nguon LS; Seo J; Seo K; Han Y; Park S
    Comput Med Imaging Graph; 2022 Jun; 98():102073. PubMed ID: 35561639
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Self-adaptive beamforming method based on plane wave ultrasound imaging].
    Zhang L; Zhou H; Zheng Y; Gong X; Wang J
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2013 Aug; 30(4):843-8, 853. PubMed ID: 24059068
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Improving lateral resolution and contrast by combining coherent plane-wave compounding with adaptive weighting for medical ultrasound imaging.
    Zhang X; Wang Q
    Ultrasonics; 2023 Jul; 132():106972. PubMed ID: 36881952
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ultrafast Plane Wave Imaging Using Tensor Completion-Based Minimum Variance Algorithm.
    Paridar R; Asl BM
    Ultrasound Med Biol; 2023 Jul; 49(7):1627-1637. PubMed ID: 37087375
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fast Beamforming Method for Plane Wave Compounding Based on Beamspace Adaptive Beamformer and Delay-Multiply-and-Sum.
    Sotoodeh Ziksari M; Asl BM
    Ultrasound Med Biol; 2023 May; 49(5):1164-1172. PubMed ID: 36841647
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Plane wave ultrasound imaging using compressive sensing and minimum variance beamforming.
    Paridar R; Asl BM
    Ultrasonics; 2023 Jan; 127():106838. PubMed ID: 36126437
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Improving Image Quality for Single-Angle Plane Wave Ultrasound Imaging With Convolutional Neural Network Beamformer.
    Lu JY; Lee PY; Huang CC
    IEEE Trans Ultrason Ferroelectr Freq Control; 2022 Apr; 69(4):1326-1336. PubMed ID: 35175918
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Resolving Ultrasound Contrast Microbubbles Using Minimum Variance Beamforming.
    Diamantis K; Anderson T; Butler MB; Villagomez-Hoyos CA; Jensen JA; Sboros V
    IEEE Trans Med Imaging; 2019 Jan; 38(1):194-204. PubMed ID: 30059295
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Adaptive beamforming based on minimum variance (ABF-MV) using deep neural network for ultrafast ultrasound imaging.
    Wang W; He Q; Zhang Z; Feng Z
    Ultrasonics; 2022 Dec; 126():106823. PubMed ID: 35973332
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Deep reconstruction of high-quality ultrasound images from raw plane-wave data: A simulation and in vivo study.
    Goudarzi S; Rivaz H
    Ultrasonics; 2022 Sep; 125():106778. PubMed ID: 35728310
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Adaptive Multifocus Beamforming for Contrast-Enhanced-Super-Resolution Ultrasound Imaging in Deep Tissue.
    Espindola D; Lin F; Soulioti DE; Dayton PA; Pinton GF
    IEEE Trans Ultrason Ferroelectr Freq Control; 2018 Dec; 65(12):2255-2263. PubMed ID: 30136938
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An Adaptive Synthetic Aperture Method Applied to Ultrasound Tissue Harmonic Imaging.
    Varnosfaderani MHH; Mohammadzadeh Asl B; Faridsoltani S
    IEEE Trans Ultrason Ferroelectr Freq Control; 2018 Apr; 65(4):557-569. PubMed ID: 29610086
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Image Quality Enhancement Using a Deep Neural Network for Plane Wave Medical Ultrasound Imaging.
    Qi Y; Guo Y; Wang Y
    IEEE Trans Ultrason Ferroelectr Freq Control; 2021 Apr; 68(4):926-934. PubMed ID: 32915734
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Extended aperture image reconstruction for plane-wave imaging.
    Nguon LS; Park S
    Ultrasonics; 2023 Sep; 134():107096. PubMed ID: 37392616
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Minimum variance beamforming combined with covariance matrix-based adaptive weighting for medical ultrasound imaging.
    Wang Y; Wang Y; Liu M; Lan Z; Zheng C; Peng H
    Biomed Eng Online; 2022 Jun; 21(1):40. PubMed ID: 35717330
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of element directivity on adaptive beamforming applied to high-frame-rate ultrasound.
    Hasegawa H; Kanai H
    IEEE Trans Ultrason Ferroelectr Freq Control; 2015 Mar; 62(3):511-23. PubMed ID: 25768817
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Post-processing radio-frequency signal based on deep learning method for ultrasonic microbubble imaging.
    Dai M; Li S; Wang Y; Zhang Q; Yu J
    Biomed Eng Online; 2019 Sep; 18(1):95. PubMed ID: 31511011
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Minimum variance beamforming combined with adaptive coherence weighting applied to medical ultrasound imaging.
    Asl BM; Mahloojifar A
    IEEE Trans Ultrason Ferroelectr Freq Control; 2009 Sep; 56(9):1923-31. PubMed ID: 19811995
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A submatrix spatial coherence approach to minimum variance beamforming combined with sign coherence factor for coherent plane wave compounding.
    Yan X; Wang Y
    Technol Health Care; 2022; 30(S1):11-25. PubMed ID: 35124580
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.