These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
156 related articles for article (PubMed ID: 37544898)
1. Printing Three-Dimensional Refractory Metal Patterns in Ambient Air: Toward High Temperature Sensors. Yu J; Hu C; Wang Z; Wei Y; Liu Z; Li Q; Zhang L; Tan Q; Zang X Adv Sci (Weinh); 2023 Nov; 10(31):e2302479. PubMed ID: 37544898 [TBL] [Abstract][Full Text] [Related]
2. Laser-Induced Tar-Mediated Sintering of Metals and Refractory Carbides in Air. Zang X; Tai KY; Jian C; Shou W; Matusik W; Ferralis N; Grossman JC ACS Nano; 2020 Aug; 14(8):10413-10420. PubMed ID: 32806046 [TBL] [Abstract][Full Text] [Related]
3. 3D Printing of Metals with sub-10 µm Resolution. Wang J; Shou J; Liu D; Yao Y; Qian Q; Wang Z; Ren J; Zhang B; Chen H; Yu Y; He Z; Zhou N Small; 2024 Nov; 20(47):e2406518. PubMed ID: 39183518 [TBL] [Abstract][Full Text] [Related]
4. Laser-assisted direct ink writing of planar and 3D metal architectures. Skylar-Scott MA; Gunasekaran S; Lewis JA Proc Natl Acad Sci U S A; 2016 May; 113(22):6137-42. PubMed ID: 27185932 [TBL] [Abstract][Full Text] [Related]
5. Ink-Extrusion 3D Printing and Silicide Coating of HfNbTaTiZr Refractory High-Entropy Alloy for Extreme Temperature Applications. Zhang D; Hsu YC; Dunand DC Adv Sci (Weinh); 2024 May; 11(17):e2309693. PubMed ID: 38419372 [TBL] [Abstract][Full Text] [Related]
6. Multi-Material Direct Ink Writing (DIW) for Complex 3D Metallic Structures with Removable Supports. Xu C; Quinn B; Lebel LL; Therriault D; L'Espérance G ACS Appl Mater Interfaces; 2019 Feb; 11(8):8499-8506. PubMed ID: 30689948 [TBL] [Abstract][Full Text] [Related]
7. Laser Sintering of Liquid Metal Nanoparticles for Scalable Manufacturing of Soft and Flexible Electronics. Liu S; Yuen MC; White EL; Boley JW; Deng B; Cheng GJ; Kramer-Bottiglio R ACS Appl Mater Interfaces; 2018 Aug; 10(33):28232-28241. PubMed ID: 30045618 [TBL] [Abstract][Full Text] [Related]
9. Direct ink writing of porous titanium (Ti6Al4V) lattice structures. Elsayed H; Rebesan P; Giacomello G; Pasetto M; Gardin C; Ferroni L; Zavan B; Biasetto L Mater Sci Eng C Mater Biol Appl; 2019 Oct; 103():109794. PubMed ID: 31349412 [TBL] [Abstract][Full Text] [Related]
10. Nanoalloy Printed and Pulse-Laser Sintered Flexible Sensor Devices with Enhanced Stability and Materials Compatibility. Zhao W; Rovere T; Weerawarne D; Osterhoudt G; Kang N; Joseph P; Luo J; Shim B; Poliks M; Zhong CJ ACS Nano; 2015 Jun; 9(6):6168-77. PubMed ID: 26034999 [TBL] [Abstract][Full Text] [Related]
11. Shape fidelity, mechanical and biological performance of 3D printed polycaprolactone-bioactive glass composite scaffolds. Baier RV; Contreras Raggio JI; Giovanetti CM; Palza H; Burda I; Terrasi G; Weisse B; De Freitas GS; Nyström G; Vivanco JF; Aiyangar AK Biomater Adv; 2022 Mar; 134():112540. PubMed ID: 35525740 [TBL] [Abstract][Full Text] [Related]
12. Direct Ink-Write Printing of Ceramic Clay with an Embedded Wireless Temperature and Relative Humidity Sensor. Marquez C; Mata JJ; Renteria A; Gonzalez D; Gomez SG; Lopez A; Baca AN; Nuñez A; Hassan MS; Burke V; Perlasca D; Wang Y; Xiong Y; Kruichak JN; Espalin D; Lin Y Sensors (Basel); 2023 Mar; 23(6):. PubMed ID: 36992062 [TBL] [Abstract][Full Text] [Related]
13. 3D printing of highly conductive silver architectures enabled to sinter at low temperatures. Kim JH; Lee S; Wajahat M; Ahn J; Pyo J; Chang WS; Seol SK Nanoscale; 2019 Oct; 11(38):17682-17688. PubMed ID: 31539002 [TBL] [Abstract][Full Text] [Related]
14. Three-Dimensional-Printed Silica Aerogels for Thermal Insulation by Directly Writing Temperature-Induced Solidifiable Inks. Wang L; Feng J; Luo Y; Zhou Z; Jiang Y; Luo X; Xu L; Li L; Feng J ACS Appl Mater Interfaces; 2021 Sep; 13(34):40964-40975. PubMed ID: 34424660 [TBL] [Abstract][Full Text] [Related]
15. Microstructures, Mechanical Properties and Electromagnetic Wave Absorption Performance of Porous SiC Ceramics by Direct Foaming Combined with Direct-Ink-Writing-Based 3D Printing. Wu J; Zhang L; Wang W; Su R; Gao X; Li S; Wang G; He R Materials (Basel); 2023 Apr; 16(7):. PubMed ID: 37049155 [TBL] [Abstract][Full Text] [Related]
16. Recent Advancements in Liquid Metal Flexible Printed Electronics: Properties, Technologies, and Applications. Wang X; Liu J Micromachines (Basel); 2016 Nov; 7(12):. PubMed ID: 30404387 [TBL] [Abstract][Full Text] [Related]
17. Direct Ink Writing: A 3D Printing Technology for Diverse Materials. Saadi MASR; Maguire A; Pottackal NT; Thakur MSH; Ikram MM; Hart AJ; Ajayan PM; Rahman MM Adv Mater; 2022 Jul; 34(28):e2108855. PubMed ID: 35246886 [TBL] [Abstract][Full Text] [Related]
18. 3D printing of glass by additive manufacturing techniques: a review. Zhang D; Liu X; Qiu J Front Optoelectron; 2021 Sep; 14(3):263-277. PubMed ID: 36637727 [TBL] [Abstract][Full Text] [Related]
19. Approaching intrinsic dynamics of MXenes hybrid hydrogel for 3D printed multimodal intelligent devices with ultrahigh superelasticity and temperature sensitivity. Liu H; Du C; Liao L; Zhang H; Zhou H; Zhou W; Ren T; Sun Z; Lu Y; Nie Z; Xu F; Zhu J; Huang W Nat Commun; 2022 Jun; 13(1):3420. PubMed ID: 35701412 [TBL] [Abstract][Full Text] [Related]