These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 3754494)

  • 21. Cytochrome P450 2E1 and 2A6 enzymes as major catalysts for metabolic activation of N-nitrosodialkylamines and tobacco-related nitrosamines in human liver microsomes.
    Yamazaki H; Inui Y; Yun CH; Guengerich FP; Shimada T
    Carcinogenesis; 1992 Oct; 13(10):1789-94. PubMed ID: 1423839
    [TBL] [Abstract][Full Text] [Related]  

  • 22. [Effect of modifiers of microsomal enzymes on the enzymatic denitrosation of dialkyl-N-nitrosamines].
    Arshinov VIu; Shuliakovskaia TS
    Eksp Onkol; 1988; 10(2):20-2. PubMed ID: 3391120
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Metabolic denitrosation of N-nitroso-N-methylaniline: detection of amine-metabolites.
    Scheper T; Appel KE; Schunack W; Somogyi A; Hildebrandt AG
    Chem Biol Interact; 1991; 77(1):81-96. PubMed ID: 1983965
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The Fenton degradation as a nonenzymatic model for microsomal denitrosation of N-nitrosodimethylamine.
    Heur YH; Streeter AJ; Nims RW; Keefer LK
    Chem Res Toxicol; 1989; 2(4):247-53. PubMed ID: 2519780
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Concurrent generation of methylamine and nitrite during denitrosation of N-nitrosodimethylamine by rat liver microsomes.
    Keefer LK; Anjo T; Wade D; Wang T; Yang CS
    Cancer Res; 1987 Jan; 47(2):447-52. PubMed ID: 3791233
    [TBL] [Abstract][Full Text] [Related]  

  • 26. In vitro differential metabolism of merbarone by xanthine oxidase and microsomal flavoenzymes. The role of reactive oxygen species.
    Muindi JF; Stevens YW; Warrell RP; Young CW
    Drug Metab Dispos; 1993; 21(3):410-4. PubMed ID: 8100495
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Metabolic denitrosation of diphenylnitrosamine: a possible bioactivation pathway.
    Appel KE; Görsdorf S; Scheper T; Ruf HH; Rühl CS; Hildebrandt AG
    J Cancer Res Clin Oncol; 1987; 113(2):131-6. PubMed ID: 3031080
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Drug-nitrite interactions: species and sex differences in the formation of dimethylnitrosamine and its effects on the hepatic enzyme activities.
    Omori Y; Takahashi A; Ohno Y; Ishiwata H; Tanimura A
    Arch Toxicol Suppl; 1979; (2):349-54. PubMed ID: 288343
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Formation and metabolism of nitrosamines in vivo, monitored by 14N-stable isotope labelling.
    Frank H; Mörike K; Vujtovic-Ockenga N; Remmer H
    Xenobiotica; 1985 Jan; 15(1):77-86. PubMed ID: 3984385
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Xanthine oxidase-mediated denitrosation of N-nitroso-tryptophan by superoxide and uric acid.
    Viles K; Mathai C; Jourd'heuil FL; Jourd'heuil D
    Nitric Oxide; 2013 Jan; 28():57-64. PubMed ID: 23099296
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Enhanced demethylation and denitrosation of N-nitrosodimethylamine by human liver microsomes from alcoholics.
    Amelizad S; Appel KE; Schoepke M; Rühl CS; Oesch F
    Cancer Lett; 1989 Jul; 46(1):43-9. PubMed ID: 2736507
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Phospholipid requirement for dimethylnitrosamine demethylation by hamster hepatic microsomal cytochrome P-450 enzyme system.
    Lotlikar PD; Baldy WJ; Nyce J; Dwyer EN
    Biochem J; 1976 Nov; 160(2):401-4. PubMed ID: 1008863
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Deuterium isotope effect on denitrosation and demethylation of N-nitrosodimethylamine by rat liver microsomes.
    Wade D; Yang CS; Metral CJ; Roman JM; Hrabie JA; Riggs CW; Anjo T; Keefer LK; Mico BA
    Cancer Res; 1987 Jul; 47(13):3373-7. PubMed ID: 3581074
    [TBL] [Abstract][Full Text] [Related]  

  • 34. [Effect of copper and zinc on the metabolism of N-nitrosamine and the activity of cytochrome P-450 in the liver of rats].
    Luo FQ; Lu SX
    Zhonghua Zhong Liu Za Zhi; 1988 Jan; 10(1):12-4. PubMed ID: 3416694
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Evidence for metabolic activation of N'-nitrosonornicotine and N-nitrosobenzylmethylamine by a rat nasal coumarin hydroxylase.
    Patten CJ; Peterson LA; Murphy SE
    Drug Metab Dispos; 1998 Feb; 26(2):177-80. PubMed ID: 9456305
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Peroxynitrite formation from the simultaneous reduction of nitrite and oxygen by xanthine oxidase.
    Millar TM
    FEBS Lett; 2004 Mar; 562(1-3):129-33. PubMed ID: 15044013
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Studies on nitrosamine formation by the interaction between drugs and nitrite. II. Hepatotoxicity by the simultaneous administration of several drugs and nitrite.
    Kawanishi T; Ohno Y; Sunouchi M; Onoda K; Takahashi A; Kasuya Y; Omori Y
    J Toxicol Sci; 1981 Nov; 6(4):271-86. PubMed ID: 7338959
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Microbial nitrosamine formation in palm wine: in vitro N-nitrosation by cell suspensions.
    Maduagwu EN; Bassir O
    J Environ Pathol Toxicol; 1979; 2(4):1183-94. PubMed ID: 36441
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Metabolism of N-nitroso-2,6-dimethylmorpholine by isozymes of rabbit liver microsomal cytochrome P-450.
    Kokkinakis DM; Koop DR; Scarpelli DG; Coon MJ; Hollenberg PF
    Cancer Res; 1985 Feb; 45(2):619-24. PubMed ID: 3967237
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Production of hydroxyl radical by iron(III)-anthraquinone complexes through self-reduction and through reductive activation by the xanthine oxidase/hypoxanthine system.
    Malisza KL; Hasinoff BB
    Arch Biochem Biophys; 1995 Aug; 321(1):51-60. PubMed ID: 7639535
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.