These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

197 related articles for article (PubMed ID: 37544947)

  • 21. Novel Methods and Approaches for Safety Evaluation of Nanoparticle Formulations: A Focus Towards
    Tirumala MG; Anchi P; Raja S; Rachamalla M; Godugu C
    Front Pharmacol; 2021; 12():612659. PubMed ID: 34566630
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Nanoparticle-plant interaction: Implications in energy, environment, and agriculture.
    Rai PK; Kumar V; Lee S; Raza N; Kim KH; Ok YS; Tsang DCW
    Environ Int; 2018 Oct; 119():1-19. PubMed ID: 29909166
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Organization of research team for nano-associated safety assessment in effort to study nanotoxicology of zinc oxide and silica nanoparticles.
    Kim YR; Park SH; Lee JK; Jeong J; Kim JH; Meang EH; Yoon TH; Lim ST; Oh JM; An SS; Kim MK
    Int J Nanomedicine; 2014; 9 Suppl 2(Suppl 2):3-10. PubMed ID: 25565821
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Approach to using mechanism-based structure activity relationship (SAR) analysis to assess human health hazard potential of nanomaterials.
    Lai DY
    Food Chem Toxicol; 2015 Nov; 85():120-6. PubMed ID: 26111809
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Toxicity Assessment in the Nanoparticle Era.
    De Matteis V; Rinaldi R
    Adv Exp Med Biol; 2018; 1048():1-19. PubMed ID: 29453529
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Uptake of Engineered Nanoparticles by Food Crops: Characterization, Mechanisms, and Implications.
    Ma C; White JC; Zhao J; Zhao Q; Xing B
    Annu Rev Food Sci Technol; 2018 Mar; 9():129-153. PubMed ID: 29580140
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Interaction of Engineered Nanoparticles with the Agri-environment.
    Pradhan S; Mailapalli DR
    J Agric Food Chem; 2017 Sep; 65(38):8279-8294. PubMed ID: 28876911
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Nanoparticle's uptake and translocation mechanisms in plants via seed priming, foliar treatment, and root exposure: a review.
    Khan I; Awan SA; Rizwan M; Hassan ZU; Akram MA; Tariq R; Brestic M; Xie W
    Environ Sci Pollut Res Int; 2022 Dec; 29(60):89823-89833. PubMed ID: 36344893
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Effects of metal nanoparticle-mediated treatment on seed quality parameters of different crops.
    Singh N; Bhuker A; Jeevanadam J
    Naunyn Schmiedebergs Arch Pharmacol; 2021 Jun; 394(6):1067-1089. PubMed ID: 33660031
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Nanotoxicology and Nanosafety: Safety-By-Design and Testing at a Glance.
    Zielińska A; Costa B; Ferreira MV; Miguéis D; Louros JMS; Durazzo A; Lucarini M; Eder P; Chaud MV; Morsink M; Willemen N; Severino P; Santini A; Souto EB
    Int J Environ Res Public Health; 2020 Jun; 17(13):. PubMed ID: 32605255
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Influence of Nanotoxicity on Human Health and Environment: The Alternative Strategies.
    Viswanath B; Kim S
    Rev Environ Contam Toxicol; 2017; 242():61-104. PubMed ID: 27718008
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Advancing risk assessment of engineered nanomaterials: application of computational approaches.
    Gajewicz A; Rasulev B; Dinadayalane TC; Urbaszek P; Puzyn T; Leszczynska D; Leszczynski J
    Adv Drug Deliv Rev; 2012 Dec; 64(15):1663-93. PubMed ID: 22664229
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Fungi-derived agriculturally important nanoparticles and their application in crop stress management - Prospects and environmental risks.
    Sonawane H; Shelke D; Chambhare M; Dixit N; Math S; Sen S; Borah SN; Islam NF; Joshi SJ; Yousaf B; Rinklebe J; Sarma H
    Environ Res; 2022 Sep; 212(Pt D):113543. PubMed ID: 35613631
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Knowledge gaps between nanotoxicological research and nanomaterial safety.
    Hu X; Li D; Gao Y; Mu L; Zhou Q
    Environ Int; 2016 Sep; 94():8-23. PubMed ID: 27203780
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Nanotechnology for sustainable agro-food systems: The need and role of nanoparticles in protecting plants and improving crop productivity.
    Guleria G; Thakur S; Shandilya M; Sharma S; Thakur S; Kalia S
    Plant Physiol Biochem; 2023 Jan; 194():533-549. PubMed ID: 36521290
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Assessing regulated cell death modalities as an efficient tool for
    Tkachenko A; Onishchenko A; Myasoedov V; Yefimova S; Havranek O
    Nanotoxicology; 2023 Apr; 17(3):218-248. PubMed ID: 37083543
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Health hazards associated with nanomaterials.
    Pattan G; Kaul G
    Toxicol Ind Health; 2014 Jul; 30(6):499-519. PubMed ID: 23012342
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Insights into eco-corona formation and its role in the biological effects of nanomaterials from a molecular mechanisms perspective.
    Liu S; Zhang X; Zeng K; He C; Huang Y; Xin G; Huang X
    Sci Total Environ; 2023 Feb; 858(Pt 2):159867. PubMed ID: 36334667
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Environmental risk of nanomaterials and nanoparticles and EPR technique as an effective tool to study them-a review.
    Bimová P; Barbieriková Z; Grenčíková A; Šípoš R; Škulcová AB; Krivjanská A; Mackuľak T
    Environ Sci Pollut Res Int; 2021 May; 28(18):22203-22220. PubMed ID: 33733403
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Nanotoxicity: a challenge for future medicine.
    Akçan R; Aydogan HC; Yildirim MŞ; Taştekin B; Sağlam N
    Turk J Med Sci; 2020 Jun; 50(4):1180-1196. PubMed ID: 32283898
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.