These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 37545020)

  • 1. How can clinical safety and efficacy concerns in stem cell therapy for spinal cord injury be overcome?
    Hejrati N; Wong R; Khazaei M; Fehlings MG
    Expert Opin Biol Ther; 2023; 23(9):883-899. PubMed ID: 37545020
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Spinal cord injuries: how could cell therapy help?
    Badner A; Siddiqui AM; Fehlings MG
    Expert Opin Biol Ther; 2017 May; 17(5):529-541. PubMed ID: 28306359
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Human Pluripotent Stem Cells for Spinal Cord Injury.
    Farzaneh M; Anbiyaiee A; Khoshnam SE
    Curr Stem Cell Res Ther; 2020; 15(2):135-143. PubMed ID: 31656156
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Stem Cell Transplantation: A Promising Therapy for Spinal Cord Injury.
    Gong Z; Xia K; Xu A; Yu C; Wang C; Zhu J; Huang X; Chen Q; Li F; Liang C
    Curr Stem Cell Res Ther; 2020; 15(4):321-331. PubMed ID: 31441733
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Stem cell therapies for acute spinal cord injury in humans: a review.
    Jin MC; Medress ZA; Azad TD; Doulames VM; Veeravagu A
    Neurosurg Focus; 2019 Mar; 46(3):E10. PubMed ID: 30835679
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Review of Treatment Methods Focusing on Human Induced Pluripotent Stem Cell-Derived Neural Stem/Progenitor Cell Transplantation for Chronic Spinal Cord Injury.
    Shibata T; Tashiro S; Nakamura M; Okano H; Nagoshi N
    Medicina (Kaunas); 2023 Jul; 59(7):. PubMed ID: 37512047
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Human Embryonic Stem Cell-Derived Oligodendrocyte Progenitor Cells: Preclinical Efficacy and Safety in Cervical Spinal Cord Injury.
    Manley NC; Priest CA; Denham J; Wirth ED; Lebkowski JS
    Stem Cells Transl Med; 2017 Oct; 6(10):1917-1929. PubMed ID: 28834391
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Applications of induced pluripotent stem cell technologies in spinal cord injury.
    Nagoshi N; Okano H
    J Neurochem; 2017 Jun; 141(6):848-860. PubMed ID: 28199003
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Concise Review: Laying the Groundwork for a First-In-Human Study of an Induced Pluripotent Stem Cell-Based Intervention for Spinal Cord Injury.
    Tsuji O; Sugai K; Yamaguchi R; Tashiro S; Nagoshi N; Kohyama J; Iida T; Ohkubo T; Itakura G; Isoda M; Shinozaki M; Fujiyoshi K; Kanemura Y; Yamanaka S; Nakamura M; Okano H
    Stem Cells; 2019 Jan; 37(1):6-13. PubMed ID: 30371964
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Immunosuppressive mechanisms for stem cell transplant survival in spinal cord injury.
    Antonios JP; Farah GJ; Cleary DR; Martin JR; Ciacci JD; Pham MH
    Neurosurg Focus; 2019 Mar; 46(3):E9. PubMed ID: 30835678
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The Application of Neural Stem/Progenitor Cells for Regenerative Therapy of Spinal Cord Injury.
    Yu C; Xia K; Gong Z; Ying L; Shu J; Zhang F; Chen Q; Li F; Liang C
    Curr Stem Cell Res Ther; 2019; 14(6):495-503. PubMed ID: 30924422
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A robust culture system to generate neural progenitors with gliogenic competence from clinically relevant induced pluripotent stem cells for treatment of spinal cord injury.
    Kamata Y; Isoda M; Sanosaka T; Shibata R; Ito S; Okubo T; Shinozaki M; Inoue M; Koya I; Shibata S; Shindo T; Matsumoto M; Nakamura M; Okano H; Nagoshi N; Kohyama J
    Stem Cells Transl Med; 2021 Mar; 10(3):398-413. PubMed ID: 33226180
    [TBL] [Abstract][Full Text] [Related]  

  • 13. hiPSC-derived NSCs effectively promote the functional recovery of acute spinal cord injury in mice.
    Kong D; Feng B; Amponsah AE; He J; Guo R; Liu B; Du X; Liu X; Zhang S; Lv F; Ma J; Cui H
    Stem Cell Res Ther; 2021 Mar; 12(1):172. PubMed ID: 33706803
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Transplantation of neural stem cells clonally derived from embryonic stem cells promotes recovery after murine spinal cord injury.
    Salewski RP; Mitchell RA; Shen C; Fehlings MG
    Stem Cells Dev; 2015 Jan; 24(1):36-50. PubMed ID: 25119334
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Current Concepts of Stem Cell Therapy for Chronic Spinal Cord Injury.
    Suzuki H; Sakai T
    Int J Mol Sci; 2021 Jul; 22(14):. PubMed ID: 34299053
    [TBL] [Abstract][Full Text] [Related]  

  • 16. iPS cell transplantation for traumatic spinal cord injury.
    Goulão M; Lepore AC
    Curr Stem Cell Res Ther; 2016; 11(4):321-8. PubMed ID: 26201863
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Adult stem cell transplants for spinal cord injury repair: current state in preclinical research.
    Hernández J; Torres-Espín A; Navarro X
    Curr Stem Cell Res Ther; 2011 Sep; 6(3):273-87. PubMed ID: 21476980
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Pre-evaluated safe human iPSC-derived neural stem cells promote functional recovery after spinal cord injury in common marmoset without tumorigenicity.
    Kobayashi Y; Okada Y; Itakura G; Iwai H; Nishimura S; Yasuda A; Nori S; Hikishima K; Konomi T; Fujiyoshi K; Tsuji O; Toyama Y; Yamanaka S; Nakamura M; Okano H
    PLoS One; 2012; 7(12):e52787. PubMed ID: 23300777
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Combined transplantation of neural stem cells and olfactory ensheathing cells for the repair of spinal cord injuries.
    Ao Q; Wang AJ; Chen GQ; Wang SJ; Zuo HC; Zhang XF
    Med Hypotheses; 2007; 69(6):1234-7. PubMed ID: 17548168
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cell transplantation for spinal cord injury focusing on iPSCs.
    Nakamura M; Tsuji O; Nori S; Toyama Y; Okano H
    Expert Opin Biol Ther; 2012 Jul; 12(7):811-21. PubMed ID: 22519931
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.