These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
152 related articles for article (PubMed ID: 37545413)
1. Molecular engineering to enhance the reactive oxygen species generation of AIEgens and exploration of their versatile applications. Yin W; Li J; Ma Y; Xing L; Chen Z; Liu B; Huo Y; Zhao Z; Ji S J Mater Chem B; 2023 Aug; 11(34):8182-8193. PubMed ID: 37545413 [TBL] [Abstract][Full Text] [Related]
2. Tuning intramolecular charge transfer and spin-orbit coupling of AIE-active type-I photosensitizers for photodynamic therapy. Singh R; Chen DG; Wang CH; Wu CC; Hsu CH; Wu CH; Lai TY; Chou PT; Chen CT J Mater Chem B; 2022 Aug; 10(32):6228-6236. PubMed ID: 35920213 [TBL] [Abstract][Full Text] [Related]
3. Tuning Organelle Specificity and Photodynamic Therapy Efficiency by Molecular Function Design. Liu Z; Zou H; Zhao Z; Zhang P; Shan GG; Kwok RTK; Lam JWY; Zheng L; Tang BZ ACS Nano; 2019 Oct; 13(10):11283-11293. PubMed ID: 31525947 [TBL] [Abstract][Full Text] [Related]
4. Molecular engineering to achieve AIE-active photosensitizers with NIR emission and rapid ROS generation efficiency. Ding G; Tong J; Gong J; Wang Z; Su Z; Liu L; Han X; Wang J; Zhang L; Wang X; Wen LL; Shan GG J Mater Chem B; 2022 Jul; 10(27):5272-5278. PubMed ID: 35766043 [TBL] [Abstract][Full Text] [Related]
5. Progress and trends of photodynamic therapy: From traditional photosensitizers to AIE-based photosensitizers. Wang S; Wang X; Yu L; Sun M Photodiagnosis Photodyn Ther; 2021 Jun; 34():102254. PubMed ID: 33713845 [TBL] [Abstract][Full Text] [Related]
6. Precise molecular engineering for the preparation of pyridinium photosensitizers with efficient ROS generation and photothermal conversion. Yin W; Li J; Ma Y; Li W; Huo Y; Zhao Z; Ji S Phys Chem Chem Phys; 2024 Mar; 26(13):10156-10167. PubMed ID: 38495015 [TBL] [Abstract][Full Text] [Related]
7. Amphiphilic Tetraphenylethene-Based Pyridinium Salt for Selective Cell-Membrane Imaging and Room-Light-Induced Special Reactive Oxygen Species Generation. Zhang W; Huang Y; Chen Y; Zhao E; Hong Y; Chen S; Lam JWY; Chen Y; Hou J; Tang BZ ACS Appl Mater Interfaces; 2019 Mar; 11(11):10567-10577. PubMed ID: 30801178 [TBL] [Abstract][Full Text] [Related]
8. Highly Efficient Near-Infrared Photosensitizers with Aggregation-Induced Emission Characteristics: Rational Molecular Design and Photodynamic Cancer Cell Ablation. Chen D; Long Z; Zhong C; Chen L; Dang Y; Hu JJ; Lou X; Xia F ACS Appl Bio Mater; 2021 Jun; 4(6):5231-5239. PubMed ID: 35007005 [TBL] [Abstract][Full Text] [Related]
9. Multifunctional Two-Photon AIE Luminogens for Highly Mitochondria-Specific Bioimaging and Efficient Photodynamic Therapy. Zhuang W; Yang L; Ma B; Kong Q; Li G; Wang Y; Tang BZ ACS Appl Mater Interfaces; 2019 Jun; 11(23):20715-20724. PubMed ID: 31144501 [TBL] [Abstract][Full Text] [Related]
10. Recent molecular design strategies for efficient photodynamic therapy and its synergistic therapy based on AIE photosensitizers. Liu J; Chen W; Zheng C; Hu F; Zhai J; Bai Q; Sun N; Qian G; Zhang Y; Dong K; Lu T Eur J Med Chem; 2022 Dec; 244():114843. PubMed ID: 36265281 [TBL] [Abstract][Full Text] [Related]
11. AIE material for photodynamic therapy. Saini V; Venkatesh V Prog Mol Biol Transl Sci; 2021; 185():45-73. PubMed ID: 34782107 [TBL] [Abstract][Full Text] [Related]
12. Dual-Functional AIE Fluorescent Probe for Visualization of Lipid Droplets and Photodynamic Therapy of Cancer. Pei S; Li H; Chen L; Nie G; Wang H; Liu C; Zhang C Anal Chem; 2024 Apr; 96(14):5615-5624. PubMed ID: 38544396 [TBL] [Abstract][Full Text] [Related]
13. AIE-active Ir(III) complexes as type-I dominant photosensitizers for efficient photodynamic therapy. Tong J; Yang X; Song X; Liang J; Huang S; Mao H; Akhtar M; Liu A; Shan GG; Li G Dalton Trans; 2023 Jan; 52(4):1105-1112. PubMed ID: 36602243 [TBL] [Abstract][Full Text] [Related]
14. Red/NIR emissive aggregation-induced emission-active photosensitizers with strong donor-acceptor strength for image-guided photodynamic therapy of cancer. Ma Y; Yin W; Ji S; Wang J; Lam JWY; Kwok RTK; Huo Y; Sun J; Tang BZ Luminescence; 2023 Dec; 38(12):2086-2094. PubMed ID: 37740529 [TBL] [Abstract][Full Text] [Related]
15. Aggregation-induced emission photosensitizer-based photodynamic therapy in cancer: from chemical to clinical. Meng Z; Xue H; Wang T; Chen B; Dong X; Yang L; Dai J; Lou X; Xia F J Nanobiotechnology; 2022 Jul; 20(1):344. PubMed ID: 35883086 [TBL] [Abstract][Full Text] [Related]
16. Cationization to boost both type I and type II ROS generation for photodynamic therapy. Yu Y; Wu S; Zhang L; Xu S; Dai C; Gan S; Xie G; Feng G; Tang BZ Biomaterials; 2022 Jan; 280():121255. PubMed ID: 34810034 [TBL] [Abstract][Full Text] [Related]
17. Design and structural regulation of AIE photosensitizers for imaging-guided photodynamic anti-tumor application. Jia S; Yuan H; Hu R Biomater Sci; 2022 Aug; 10(16):4443-4457. PubMed ID: 35789348 [TBL] [Abstract][Full Text] [Related]
18. Photosensitizers with Aggregation-Induced Emission: Materials and Biomedical Applications. Hu F; Xu S; Liu B Adv Mater; 2018 Nov; 30(45):e1801350. PubMed ID: 30066341 [TBL] [Abstract][Full Text] [Related]
19. Novel aggregation-induced emission-photosensitizers with built-in capability of mitochondria targeting and glutathione depletion for efficient photodynamic therapy. Sauraj ; Kang JH; Lee O; Ko YT Nanoscale; 2023 Mar; 15(10):4882-4892. PubMed ID: 36779550 [TBL] [Abstract][Full Text] [Related]
20. Incorporating spin-orbit coupling promoted functional group into an enhanced electron D-A system: A useful designing concept for fabricating efficient photosensitizer and imaging-guided photodynamic therapy. Yang Z; Zhang Z; Sun Y; Lei Z; Wang D; Ma H; Tang BZ Biomaterials; 2021 Aug; 275():120934. PubMed ID: 34217019 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]