BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

105 related articles for article (PubMed ID: 37546252)

  • 1. Erratum: Genetic resources and breeding of maize for
    Frontiers Production Office
    Front Plant Sci; 2023; 14():1254773. PubMed ID: 37546252
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Genetic resources and breeding of maize for
    Dossa EN; Shimelis H; Mrema E; Shayanowako ATI; Laing M
    Front Plant Sci; 2023; 14():1163785. PubMed ID: 37235028
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Identification of QTLs for grain yield and other traits in tropical maize under Striga infestation.
    Badu-Apraku B; Adewale S; Paterne AA; Gedil M; Toyinbo J; Asiedu R
    PLoS One; 2020; 15(9):e0239205. PubMed ID: 32925954
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Identifying suitable tester for evaluating Striga resistant lines using DArTseq markers and agronomic traits.
    Zebire D; Menkir A; Adetimirin V; Mengesha W; Meseka S; Gedil M
    PLoS One; 2021; 16(6):e0253481. PubMed ID: 34143833
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Association analysis for resistance to Striga hermonthica in diverse tropical maize inbred lines.
    Stanley AE; Menkir A; Ifie B; Paterne AA; Unachukwu NN; Meseka S; Mengesha WA; Bossey B; Kwadwo O; Tongoona PB; Oladejo O; Sneller C; Gedil M
    Sci Rep; 2021 Dec; 11(1):24193. PubMed ID: 34921181
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mapping quantitative trait loci and predicting candidate genes for
    Badu-Apraku B; Adewale S; Paterne A; Offornedo Q; Gedil M
    Front Genet; 2023; 14():1012460. PubMed ID: 36713079
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Molecular marker-based genetic diversity assessment of Striga-resistant maize inbred lines.
    Menkir A; Kling JG; Badu-Apraku B; Ingelbrecht I
    Theor Appl Genet; 2005 Apr; 110(6):1145-53. PubMed ID: 15750826
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A study on the susceptibility of rice cultivars to Striga hermonthica and mapping of Striga tolerance quantitative trait loci in rice.
    Kaewchumnong K; Price AH
    New Phytol; 2008; 180(1):206-216. PubMed ID: 18657212
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Yield gains and associated changes in an early yellow bi-parental maize population following genomic selection for Striga resistance and drought tolerance.
    Badu-Apraku B; Talabi AO; Fakorede MAB; Fasanmade Y; Gedil M; Magorokosho C; Asiedu R
    BMC Plant Biol; 2019 Apr; 19(1):129. PubMed ID: 30953477
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Development of a Haploid-Inducer Mediated Genome Editing System for Accelerating Maize Breeding.
    Wang B; Zhu L; Zhao B; Zhao Y; Xie Y; Zheng Z; Li Y; Sun J; Wang H
    Mol Plant; 2019 Apr; 12(4):597-602. PubMed ID: 30902686
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Genetic variation and host-parasite specificity of Striga resistance and tolerance in rice: the need for predictive breeding.
    Rodenburg J; Cissoko M; Kayongo N; Dieng I; Bisikwa J; Irakiza R; Masoka I; Midega CA; Scholes JD
    New Phytol; 2017 May; 214(3):1267-1280. PubMed ID: 28191641
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Maize In Planta Haploid Inducer Lines: A Cornerstone for Doubled Haploid Technology.
    Jacquier NMA; Gilles LM; Martinant JP; Rogowsky PM; Widiez T
    Methods Mol Biol; 2021; 2288():25-48. PubMed ID: 34270003
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Genome-Wide Association Studies for
    Pfunye A; Rwafa R; Mabasa S; Gasura E
    Int J Genomics; 2021; 2021():9979146. PubMed ID: 34239920
    [No Abstract]   [Full Text] [Related]  

  • 14. Maize resistance to witchweed through changes in strigolactone biosynthesis.
    Li C; Dong L; Durairaj J; Guan JC; Yoshimura M; Quinodoz P; Horber R; Gaus K; Li J; Setotaw YB; Qi J; De Groote H; Wang Y; Thiombiano B; Floková K; Walmsley A; Charnikhova TV; Chojnacka A; Correia de Lemos S; Ding Y; Skibbe D; Hermann K; Screpanti C; De Mesmaeker A; Schmelz EA; Menkir A; Medema M; Van Dijk ADJ; Wu J; Koch KE; Bouwmeester HJ
    Science; 2023 Jan; 379(6627):94-99. PubMed ID: 36603079
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Doubled Haploid Laboratory Protocol for Wheat Using Wheat-Maize Wide Hybridization.
    Santra M; Wang H; Seifert S; Haley S
    Methods Mol Biol; 2017; 1679():235-249. PubMed ID: 28913804
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Relative changes in genetic variability and correlations in an early-maturing maize population during recurrent selection.
    Badu-Apraku B; Akinwale RO; Fakorede MA; Oyekunle M; Franco J
    Theor Appl Genet; 2012 Oct; 125(6):1289-301. PubMed ID: 22722392
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The use of maize haploidy inducers as a tool in agricultural plant biotechnology.
    Ulyanov AV; Karlov AV; Khatefov EB
    Vavilovskii Zhurnal Genet Selektsii; 2022 Nov; 26(7):704-713. PubMed ID: 36532627
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Optimizing use of U.S. Ex-PVP inbred lines for enhancing agronomic performance of tropical Striga resistant maize inbred lines.
    Maazou AS; Gedil M; Adetimirin VO; Mengesha W; Meseka S; Ilesanmi O; Agre PA; Menkir A
    BMC Plant Biol; 2022 Jun; 22(1):286. PubMed ID: 35681124
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Haploids: Constraints and opportunities in plant breeding.
    Dwivedi SL; Britt AB; Tripathi L; Sharma S; Upadhyaya HD; Ortiz R
    Biotechnol Adv; 2015 Nov; 33(6 Pt 1):812-29. PubMed ID: 26165969
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ploidy effect and genetic architecture exploration of stalk traits using DH and its corresponding haploid populations in maize.
    Meng Y; Li J; Liu J; Hu H; Li W; Liu W; Chen S
    BMC Plant Biol; 2016 Feb; 16():50. PubMed ID: 26911156
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.