BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 37546529)

  • 1. Drug-eluting, balloon-expandable, bioresorbable vascular scaffolds reduce neointimal thickness and stenosis in an animal model of percutaneous peripheral intervention.
    El Khoury R; Tzvetanov I; Estrada EA; McCarroll E; Goor JB; Guy LG; Laflamme M; Schwartz LB
    JVS Vasc Sci; 2023; 4():100114. PubMed ID: 37546529
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparison of the vascular responses to balloon-expandable stenting in the coronary and peripheral circulations: long-term results in an animal model using the TriMaxx stent.
    Dubé H; Clifford AG; Barry CM; Schwarten DE; Schwartz LB
    J Vasc Surg; 2007 Apr; 45(4):821-7. PubMed ID: 17398392
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Intravascular treatment of long segments of experimental peripheral arteries with multiple, serial, balloon-expandable, resorbable scaffolds.
    El Khoury R; Tzvetanov I; Estrada EA; McCarroll E; Michal E; Blumeyer J; Guy LG; Laflamme M; Schwartz LB
    JVS Vasc Sci; 2022; 3():205-210. PubMed ID: 35517990
    [TBL] [Abstract][Full Text] [Related]  

  • 4. INtimal hyPerplasia evAluated by oCT in de novo COROnary lesions treated by drug-eluting balloon and bare-metal stent (IN-PACT CORO): study protocol for a randomized controlled trial.
    Burzotta F; Brancati MF; Trani C; Porto I; Tommasino A; De Maria G; Niccoli G; Leone AM; Coluccia V; Schiavoni G; Crea F
    Trials; 2012 May; 13():55. PubMed ID: 22559260
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Stenting for peripheral artery disease of the lower extremities: an evidence-based analysis.
    Medical Advisory Secretariat
    Ont Health Technol Assess Ser; 2010; 10(18):1-88. PubMed ID: 23074395
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Inhibition of experimental neointimal hyperplasia and neoatherosclerosis by local, stent-mediated delivery of everolimus.
    Zhao HQ; Nikanorov A; Virmani R; Schwartz LB
    J Vasc Surg; 2012 Dec; 56(6):1680-8. PubMed ID: 22841285
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Head-to-head comparison of the neointimal response between metallic and bioresorbable everolimus-eluting scaffolds using optical coherence tomography.
    Gomez-Lara J; Brugaletta S; Farooq V; Onuma Y; Diletti R; Windecker S; Thuesen L; McClean D; Koolen J; Whitbourn R; Dudek D; Smits PC; Chevalier B; Regar E; Veldhof S; Rapoza R; Ormiston JA; Garcia-Garcia HM; Serruys PW
    JACC Cardiovasc Interv; 2011 Dec; 4(12):1271-80. PubMed ID: 22192368
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Coronary stenting with a novel stainless steel balloon-expandable stent: determinants of neointimal formation and changes in arterial geometry after placement in an atherosclerotic model.
    Carter AJ; Laird JR; Kufs WM; Bailey L; Hoopes TG; Reeves T; Farb A; Virmani R
    J Am Coll Cardiol; 1996 Apr; 27(5):1270-7. PubMed ID: 8609355
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A prospective randomised study using optical coherence tomography to assess endothelial coverage and neointimal proliferation at 6-months after implantation of a coronary everolimus-eluting stent compared with a bare metal stent postdilated with a paclitaxel-eluting balloon (OCTOPUS Trial): rationale, design and methods.
    Poerner TC; Otto S; Gassdorf J; Janiak F; Danzer C; Ferrari M; Figulla HR
    EuroIntervention; 2011 May; 7 Suppl K():K93-9. PubMed ID: 22027737
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Stent coverage and neointimal proliferation in bare metal stents postdilated with a Paclitaxel-eluting balloon versus everolimus-eluting stents: prospective randomized study using optical coherence tomography at 6-month follow-up.
    Poerner TC; Otto S; Gassdorf J; Nitsche K; Janiak F; Scheller B; Goebel B; Jung C; Figulla HR
    Circ Cardiovasc Interv; 2014 Dec; 7(6):760-7. PubMed ID: 25371536
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Edge vascular response after percutaneous coronary intervention: an intracoronary ultrasound and optical coherence tomography appraisal: from radioactive platforms to first- and second-generation drug-eluting stents and bioresorbable scaffolds.
    Gogas BD; Garcia-Garcia HM; Onuma Y; Muramatsu T; Farooq V; Bourantas CV; Serruys PW
    JACC Cardiovasc Interv; 2013 Mar; 6(3):211-21. PubMed ID: 23517830
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biological effect on drug distribution and vascular healing via paclitaxel-coated balloon technology in drug eluting stent restenosis swine model.
    Li Y; Tellez A; Rousselle SD; Dillon KN; Garza JA; Barry C; Granada JF
    Catheter Cardiovasc Interv; 2016 Jul; 88(1):89-98. PubMed ID: 26613810
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A head to head comparison of XINSORB bioresorbable sirolimus-eluting scaffold versus metallic sirolimus-eluting stent: 180 days follow-up in a porcine model.
    Shen L; Wu Y; Ge L; Zhang Y; Wang Q; Qian J; Qiu Z; Ge J
    Int J Cardiovasc Imaging; 2017 Oct; 33(10):1473-1481. PubMed ID: 28639098
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Different serial changes in the neointimal condition of sirolimus-eluting stents and paclitaxel-eluting stents: an optical coherence tomographic study.
    Nakamura D; Lee Y; Yoshimura T; Taniike M; Makino N; Kato H; Egami Y; Shutta R; Tanouchi J; Yamada Y; Hara M; Sakata Y; Hamasaki T; Nishino M
    EuroIntervention; 2014 Dec; 10(8):924-33. PubMed ID: 24602858
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Randomized comparison of sirolimus and paclitaxel drug-eluting stents for long lesions in the left anterior descending artery: an intravascular ultrasound study.
    Petronio AS; De Carlo M; Branchitta G; Papini B; Ciabatti N; Gistri R; Cortese B; Gherarducci G; Barsotti A
    J Am Coll Cardiol; 2007 Feb; 49(5):539-46. PubMed ID: 17276176
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Experimental evaluation of pharmacokinetic profile and biological effect of a novel paclitaxel microcrystalline balloon coating in the iliofemoral territory of swine.
    Buszman PP; Milewski K; Zurakowski A; Pajak J; Jelonek M; Gasior P; Peppas A; Tellez A; Granada JF; Buszman PE
    Catheter Cardiovasc Interv; 2014 Feb; 83(2):325-33. PubMed ID: 23703720
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Advanced neointimal growth is not associated with a low risk of in-stent thrombus. Optical coherence tomographic findings after first-generation drug-eluting stent implantation.
    Murakami D; Takano M; Yamamoto M; Inami S; Ohba T; Seino Y; Mizuno K
    Circ J; 2009 Sep; 73(9):1627-34. PubMed ID: 19667489
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparable vascular response of a new generation sirolimus eluting stents when compared to fluoropolymer everolimus eluting stents in the porcine coronary restenosis model.
    Buszman PP; Michalak MJ; Pruski M; Fernandez C; Jelonek M; Janas A; Savard C; Gwiazdowska-Nowotka B; Żurakowski A; Wojakowski W; Buszman PE; Milewski K
    Cardiol J; 2016; 23(6):657-666. PubMed ID: 27976797
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparison of early vascular morphological changes between bioresorbable poly-L-lactic acid scaffolds and metallic stents in porcine iliac arteries.
    Sekimoto Y; Obara H; Matsubara K; Fujimura N; Harada H; Kitagawa Y
    Organogenesis; 2017 Apr; 13(2):29-38. PubMed ID: 28102777
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Early-Stage Vascular Response between Bare Metal Stent and Drug-Free Bioresorbable Vascular Scaffold in the Small-Sized Peripheral Artery: A Preclinical Study in Porcine Femoral Arteries.
    Ahn J; Rha SW; Choi BG; Park S; Choi WG; Li HU; Yu H; Byeon J; Moon SK; Do ST
    Ann Vasc Surg; 2019 Oct; 60():388-396. PubMed ID: 31200063
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.