These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 37546774)

  • 1. Enhanced cell segmentation with limited annotated data using generative adversarial networks.
    Zargari A; Mashhadi N; Shariati SA
    bioRxiv; 2023 Jul; ():. PubMed ID: 37546774
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Enhanced cell segmentation with limited training datasets using cycle generative adversarial networks.
    Zargari A; Topacio BR; Mashhadi N; Shariati SA
    iScience; 2024 May; 27(5):109740. PubMed ID: 38706861
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Active Cell Appearance Model Induced Generative Adversarial Networks for Annotation-Efficient Cell Segmentation and Identification on Adaptive Optics Retinal Images.
    Liu J; Shen C; Aguilera N; Cukras C; Hufnagel RB; Zein WM; Liu T; Tam J
    IEEE Trans Med Imaging; 2021 Oct; 40(10):2820-2831. PubMed ID: 33507868
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Synthetic Generation of 3D Microscopy Images using Generative Adversarial Networks.
    Narotamo H; Ouarne M; Franco CA; Silveira M
    Annu Int Conf IEEE Eng Med Biol Soc; 2022 Jul; 2022():549-552. PubMed ID: 36086569
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Data augmentation using generative adversarial networks (CycleGAN) to improve generalizability in CT segmentation tasks.
    Sandfort V; Yan K; Pickhardt PJ; Summers RM
    Sci Rep; 2019 Nov; 9(1):16884. PubMed ID: 31729403
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Insights and Considerations in Development and Performance Evaluation of Generative Adversarial Networks (GANs): What Radiologists Need to Know.
    Yoon JT; Lee KM; Oh JH; Kim HG; Jeong JW
    Diagnostics (Basel); 2024 Aug; 14(16):. PubMed ID: 39202244
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cross-modality deep learning: Contouring of MRI data from annotated CT data only.
    Kieselmann JP; Fuller CD; Gurney-Champion OJ; Oelfke U
    Med Phys; 2021 Apr; 48(4):1673-1684. PubMed ID: 33251619
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Generative Adversarial Networks in Digital Histopathology: Current Applications, Limitations, Ethical Considerations, and Future Directions.
    Alajaji SA; Khoury ZH; Elgharib M; Saeed M; Ahmed ARH; Khan MB; Tavares T; Jessri M; Puche AC; Hoorfar H; Stojanov I; Sciubba JJ; Sultan AS
    Mod Pathol; 2024 Jan; 37(1):100369. PubMed ID: 37890670
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Efficient Wheat Head Segmentation with Minimal Annotation: A Generative Approach.
    Myers J; Najafian K; Maleki F; Ovens K
    J Imaging; 2024 Jun; 10(7):. PubMed ID: 39057723
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Using deep learning to generate synthetic B-mode musculoskeletal ultrasound images.
    Cronin NJ; Finni T; Seynnes O
    Comput Methods Programs Biomed; 2020 Nov; 196():105583. PubMed ID: 32544777
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Brain tumor segmentation using synthetic MR images - A comparison of GANs and diffusion models.
    Usman Akbar M; Larsson M; Blystad I; Eklund A
    Sci Data; 2024 Feb; 11(1):259. PubMed ID: 38424097
    [TBL] [Abstract][Full Text] [Related]  

  • 12. SpeckleGAN: a generative adversarial network with an adaptive speckle layer to augment limited training data for ultrasound image processing.
    Bargsten L; Schlaefer A
    Int J Comput Assist Radiol Surg; 2020 Sep; 15(9):1427-1436. PubMed ID: 32556953
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A survey on generative adversarial networks for imbalance problems in computer vision tasks.
    Sampath V; Maurtua I; Aguilar Martín JJ; Gutierrez A
    J Big Data; 2021; 8(1):27. PubMed ID: 33552840
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Self-Supervised Segmentation of 3D Fluorescence Microscopy Images Using CycleGAN.
    Rosa A; Narotamo H; Silveira M
    Annu Int Conf IEEE Eng Med Biol Soc; 2023 Jul; 2023():1-4. PubMed ID: 38083101
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Generative Adversarial Networks Can Create High Quality Artificial Prostate Cancer Magnetic Resonance Images.
    Xu IRL; Van Booven DJ; Goberdhan S; Breto A; Porto J; Alhusseini M; Algohary A; Stoyanova R; Punnen S; Mahne A; Arora H
    J Pers Med; 2023 Mar; 13(3):. PubMed ID: 36983728
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Label-informed cardiac magnetic resonance image synthesis through conditional generative adversarial networks.
    Amirrajab S; Al Khalil Y; Lorenz C; Weese J; Pluim J; Breeuwer M
    Comput Med Imaging Graph; 2022 Oct; 101():102123. PubMed ID: 36174308
    [TBL] [Abstract][Full Text] [Related]  

  • 17. High resolution histopathology image generation and segmentation through adversarial training.
    Li W; Li J; Polson J; Wang Z; Speier W; Arnold C
    Med Image Anal; 2022 Jan; 75():102251. PubMed ID: 34814059
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Generating Synthetic Labeled Data From Existing Anatomical Models: An Example With Echocardiography Segmentation.
    Gilbert A; Marciniak M; Rodero C; Lamata P; Samset E; Mcleod K
    IEEE Trans Med Imaging; 2021 Oct; 40(10):2783-2794. PubMed ID: 33444134
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Style Transfer-assisted Deep Learning Method for Kidney Segmentation at Multiphase MRI.
    Guo J; Goyal M; Xi Y; Hinojosa L; Haddad G; Albayrak E; Pedrosa I
    Radiol Artif Intell; 2023 Nov; 5(6):e230043. PubMed ID: 38074795
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 8.