BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 37546774)

  • 21. Patient-specific placental vessel segmentation with limited data.
    Sarwin G; Lussi J; Gervasoni S; Moehrlen U; Ochsenbein N; Nelson BJ
    J Robot Surg; 2024 Jun; 18(1):237. PubMed ID: 38833204
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Image generation by GAN and style transfer for agar plate image segmentation.
    Andreini P; Bonechi S; Bianchini M; Mecocci A; Scarselli F
    Comput Methods Programs Biomed; 2020 Feb; 184():105268. PubMed ID: 31891902
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Synthesizing anonymized and labeled TOF-MRA patches for brain vessel segmentation using generative adversarial networks.
    Kossen T; Subramaniam P; Madai VI; Hennemuth A; Hildebrand K; Hilbert A; Sobesky J; Livne M; Galinovic I; Khalil AA; Fiebach JB; Frey D
    Comput Biol Med; 2021 Apr; 131():104254. PubMed ID: 33618105
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Cross-modality (CT-MRI) prior augmented deep learning for robust lung tumor segmentation from small MR datasets.
    Jiang J; Hu YC; Tyagi N; Zhang P; Rimner A; Deasy JO; Veeraraghavan H
    Med Phys; 2019 Oct; 46(10):4392-4404. PubMed ID: 31274206
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Automatic generation of artificial images of leukocytes and leukemic cells using generative adversarial networks (syntheticcellgan).
    Barrera K; Merino A; Molina A; Rodellar J
    Comput Methods Programs Biomed; 2023 Feb; 229():107314. PubMed ID: 36565666
    [TBL] [Abstract][Full Text] [Related]  

  • 26. CT2US: Cross-modal transfer learning for kidney segmentation in ultrasound images with synthesized data.
    Song Y; Zheng J; Lei L; Ni Z; Zhao B; Hu Y
    Ultrasonics; 2022 May; 122():106706. PubMed ID: 35149255
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Image factory: A method for synthesizing novel CT images with anatomical guidance.
    Krishna A; Yenneti S; Wang G; Mueller K
    Med Phys; 2024 May; 51(5):3464-3479. PubMed ID: 38043097
    [TBL] [Abstract][Full Text] [Related]  

  • 28. MultiHeadGAN: A deep learning method for low contrast retinal pigment epithelium cell segmentation with fluorescent flatmount microscopy images.
    Yu H; Wang F; Teodoro G; Nickerson J; Kong J
    Comput Biol Med; 2022 Jul; 146():105596. PubMed ID: 35617723
    [TBL] [Abstract][Full Text] [Related]  

  • 29. On the usability of synthetic data for improving the robustness of deep learning-based segmentation of cardiac magnetic resonance images.
    Al Khalil Y; Amirrajab S; Lorenz C; Weese J; Pluim J; Breeuwer M
    Med Image Anal; 2023 Feb; 84():102688. PubMed ID: 36493702
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A deep learning segmentation strategy that minimizes the amount of manually annotated images.
    Pécot T; Alekseyenko A; Wallace K
    F1000Res; 2021; 10():256. PubMed ID: 35136569
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A Method based on Evolutionary Algorithms and Channel Attention Mechanism to Enhance Cycle Generative Adversarial Network Performance for Image Translation.
    Xue Y; Zhang Y; Neri F
    Int J Neural Syst; 2023 May; 33(5):2350026. PubMed ID: 37016799
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A Two-Stage Generative Model with CycleGAN and Joint Diffusion for MRI-based Brain Tumor Detection.
    Wang W; Cui ZX; Cheng G; Cao C; Xu X; Liu Z; Wang H; Qi Y; Liang D; Zhu Y
    IEEE J Biomed Health Inform; 2024 Jun; 28(6):3534-3544. PubMed ID: 38442049
    [TBL] [Abstract][Full Text] [Related]  

  • 33. C
    Zhang Z; Li Y; Shin BS
    Med Phys; 2022 Oct; 49(10):6491-6504. PubMed ID: 35981348
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Brain Tumor Classification Using a Combination of Variational Autoencoders and Generative Adversarial Networks.
    Ahmad B; Sun J; You Q; Palade V; Mao Z
    Biomedicines; 2022 Jan; 10(2):. PubMed ID: 35203433
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Synthetic Micrographs of Bacteria (SyMBac) allows accurate segmentation of bacterial cells using deep neural networks.
    Hardo G; Noka M; Bakshi S
    BMC Biol; 2022 Nov; 20(1):263. PubMed ID: 36447211
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Learning from adversarial medical images for X-ray breast mass segmentation.
    Shen T; Gou C; Wang FY; He Z; Chen W
    Comput Methods Programs Biomed; 2019 Oct; 180():105012. PubMed ID: 31421601
    [TBL] [Abstract][Full Text] [Related]  

  • 37. 6-MONTH INFANT BRAIN MRI SEGMENTATION GUIDED BY 24-MONTH DATA USING CYCLE-CONSISTENT ADVERSARIAL NETWORKS.
    Bui TD; Wang L; Lin W; Li G; Shen D;
    Proc IEEE Int Symp Biomed Imaging; 2020 Apr; 2020():. PubMed ID: 34422223
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Generative adversarial network based synthetic data training model for lightweight convolutional neural networks.
    Rather IH; Kumar S
    Multimed Tools Appl; 2023 May; ():1-23. PubMed ID: 37362646
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Semi-supervised semantic segmentation of prostate and organs-at-risk on 3D pelvic CT images.
    Zhang Z; Zhao T; Gay H; Zhang W; Sun B
    Biomed Phys Eng Express; 2021 Oct; 7(6):. PubMed ID: 34525455
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Semi-supervised segmentation of lesion from breast ultrasound images with attentional generative adversarial network.
    Han L; Huang Y; Dou H; Wang S; Ahamad S; Luo H; Liu Q; Fan J; Zhang J
    Comput Methods Programs Biomed; 2020 Jun; 189():105275. PubMed ID: 31978805
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.