These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

197 related articles for article (PubMed ID: 37546867)

  • 1. Characterization of Tigurilysin, a Novel Human CD59-Specific Cholesterol-Dependent Cytolysin, Reveals a Role for Host Specificity in Augmenting Toxin Activity.
    Shahi I; Dongas SA; Ilmain JK; Torres VJ; Ratner AJ
    bioRxiv; 2023 Jul; ():. PubMed ID: 37546867
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Characterization of tigurilysin, a novel human CD59-specific cholesterol-dependent cytolysin, reveals a role for host specificity in augmenting toxin activity.
    Shahi I; Dongas SA; Ilmain JK; Torres VJ; Ratner AJ
    Microbiology (Reading); 2023 Sep; 169(9):. PubMed ID: 37702594
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Human-specific bacterial pore-forming toxins induce programmed necrosis in erythrocytes.
    LaRocca TJ; Stivison EA; Hod EA; Spitalnik SL; Cowan PJ; Randis TM; Ratner AJ
    mBio; 2014 Aug; 5(5):e01251-14. PubMed ID: 25161188
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cholesterol-dependent cytolysins.
    Gilbert RJ
    Adv Exp Med Biol; 2010; 677():56-66. PubMed ID: 20687480
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The cytolytic activity of vaginolysin strictly depends on cholesterol and is potentiated by human CD59.
    Zilnyte M; Venclovas Č; Zvirbliene A; Pleckaityte M
    Toxins (Basel); 2015 Jan; 7(1):110-28. PubMed ID: 25590277
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mapping the intermedilysin-human CD59 receptor interface reveals a deep correspondence with the binding site on CD59 for complement binding proteins C8alpha and C9.
    Wickham SE; Hotze EM; Farrand AJ; Polekhina G; Nero TL; Tomlinson S; Parker MW; Tweten RK
    J Biol Chem; 2011 Jun; 286(23):20952-62. PubMed ID: 21507937
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The diversity of receptor recognition in cholesterol-dependent cytolysins.
    Tabata A; Ohkura K; Ohkubo Y; Tomoyasu T; Ohkuni H; Whiley RA; Nagamune H
    Microbiol Immunol; 2014 Mar; 58(3):155-71. PubMed ID: 24401114
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A simple method to differentiate three classes of cholesterol-dependent cytolysins.
    Tomoyasu T; Matsumoto A; Takao A; Tabata A; Nagamune H
    J Microbiol Methods; 2023 Apr; 207():106696. PubMed ID: 36898586
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Key Motif in the Cholesterol-Dependent Cytolysins Reveals a Large Family of Related Proteins.
    Evans JC; Johnstone BA; Lawrence SL; Morton CJ; Christie MP; Parker MW; Tweten RK
    mBio; 2020 Sep; 11(5):. PubMed ID: 32994330
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cholesterol-dependent cytolysins: The outstanding questions.
    Johnstone BA; Joseph R; Christie MP; Morton CJ; McGuiness C; Walsh JC; Böcking T; Tweten RK; Parker MW
    IUBMB Life; 2022 Dec; 74(12):1169-1179. PubMed ID: 35836358
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The cholesterol-dependent cytolysin signature motif: a critical element in the allosteric pathway that couples membrane binding to pore assembly.
    Dowd KJ; Farrand AJ; Tweten RK
    PLoS Pathog; 2012; 8(7):e1002787. PubMed ID: 22792065
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Identification and characterization of the first cholesterol-dependent cytolysins from Gram-negative bacteria.
    Hotze EM; Le HM; Sieber JR; Bruxvoort C; McInerney MJ; Tweten RK
    Infect Immun; 2013 Jan; 81(1):216-25. PubMed ID: 23115036
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Membrane assembly of the cholesterol-dependent cytolysin pore complex.
    Hotze EM; Tweten RK
    Biochim Biophys Acta; 2012 Apr; 1818(4):1028-38. PubMed ID: 21835159
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structural basis for tuning activity and membrane specificity of bacterial cytolysins.
    Shah NR; Voisin TB; Parsons ES; Boyd CM; Hoogenboom BW; Bubeck D
    Nat Commun; 2020 Nov; 11(1):5818. PubMed ID: 33199689
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cholesterol-dependent cytolysins: from water-soluble state to membrane pore.
    Christie MP; Johnstone BA; Tweten RK; Parker MW; Morton CJ
    Biophys Rev; 2018 Oct; 10(5):1337-1348. PubMed ID: 30117093
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Vaginolysin drives epithelial ultrastructural responses to Gardnerella vaginalis.
    Randis TM; Zaklama J; LaRocca TJ; Los FC; Lewis EL; Desai P; Rampersaud R; Amaral FE; Ratner AJ
    Infect Immun; 2013 Dec; 81(12):4544-50. PubMed ID: 24082080
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cholesterol-Dependent Cytolysins Produced by Vaginal Bacteria: Certainties and Controversies.
    Pleckaityte M
    Front Cell Infect Microbiol; 2019; 9():452. PubMed ID: 31998661
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characterization of a streptococcal cholesterol-dependent cytolysin with a lewis y and b specific lectin domain.
    Farrand S; Hotze E; Friese P; Hollingshead SK; Smith DF; Cummings RD; Dale GL; Tweten RK
    Biochemistry; 2008 Jul; 47(27):7097-107. PubMed ID: 18553932
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The Unique Molecular Choreography of Giant Pore Formation by the Cholesterol-Dependent Cytolysins of Gram-Positive Bacteria.
    Tweten RK; Hotze EM; Wade KR
    Annu Rev Microbiol; 2015; 69():323-40. PubMed ID: 26488276
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The cholesterol-dependent cytolysins pneumolysin and streptolysin O require binding to red blood cell glycans for hemolytic activity.
    Shewell LK; Harvey RM; Higgins MA; Day CJ; Hartley-Tassell LE; Chen AY; Gillen CM; James DB; Alonzo F; Torres VJ; Walker MJ; Paton AW; Paton JC; Jennings MP
    Proc Natl Acad Sci U S A; 2014 Dec; 111(49):E5312-20. PubMed ID: 25422425
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.