These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

190 related articles for article (PubMed ID: 37546867)

  • 21. Bacterial cholesterol-dependent cytolysins and their interaction with the human immune response.
    Sanford TC; Tweten RK; Abrahamsen HL
    Curr Opin Infect Dis; 2024 Jun; 37(3):164-169. PubMed ID: 38527455
    [TBL] [Abstract][Full Text] [Related]  

  • 22. More than a pore: the cellular response to cholesterol-dependent cytolysins.
    Cassidy SK; O'Riordan MX
    Toxins (Basel); 2013 Apr; 5(4):618-36. PubMed ID: 23584137
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The cholesterol-dependent cytolysin family of gram-positive bacterial toxins.
    Heuck AP; Moe PC; Johnson BB
    Subcell Biochem; 2010; 51():551-77. PubMed ID: 20213558
    [TBL] [Abstract][Full Text] [Related]  

  • 24. [Research progress on the MACPF/CDC family of pore-forming toxins].
    Qiao X; Wu FF; Su P; Li QW
    Yi Chuan; 2010 Nov; 32(11):1126-32. PubMed ID: 21513163
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Structural Basis for Receptor Recognition by the Human CD59-Responsive Cholesterol-Dependent Cytolysins.
    Lawrence SL; Gorman MA; Feil SC; Mulhern TD; Kuiper MJ; Ratner AJ; Tweten RK; Morton CJ; Parker MW
    Structure; 2016 Sep; 24(9):1488-98. PubMed ID: 27499440
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Entangling roles of cholesterol-dependent interaction and cholesterol-mediated lipid phase heterogeneity in regulating listeriolysin O pore-formation.
    Lata K; Anderluh G; Chattopadhyay K
    Biochem J; 2024 Oct; 481(19):1349-1377. PubMed ID: 39268843
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The Structural Basis for a Transition State That Regulates Pore Formation in a Bacterial Toxin.
    Wade KR; Lawrence SL; Farrand AJ; Hotze EM; Kuiper MJ; Gorman MA; Christie MP; Panjikar S; Morton CJ; Parker MW; Tweten RK
    mBio; 2019 Apr; 10(2):. PubMed ID: 31015325
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Single Point Mutation and Its Role in Specific Pathogenicity to Reveal the Mechanism of Related Protein Families.
    Liu N; Wang X; Shan Q; Li S; Li Y; Chu B; Wang J; Zhu Y
    Microbiol Spectr; 2022 Oct; 10(5):e0092322. PubMed ID: 36214694
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Oligomerization and hemolytic properties of the C-terminal domain of pyolysin, a cholesterol-dependent cytolysin.
    Pokrajac L; Harris JR; Sarraf N; Palmer M
    Biochem Cell Biol; 2013 Apr; 91(2):59-66. PubMed ID: 23527633
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Only two amino acids are essential for cytolytic toxin recognition of cholesterol at the membrane surface.
    Farrand AJ; LaChapelle S; Hotze EM; Johnson AE; Tweten RK
    Proc Natl Acad Sci U S A; 2010 Mar; 107(9):4341-6. PubMed ID: 20145114
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The MACPF/CDC family of pore-forming toxins.
    Rosado CJ; Kondos S; Bull TE; Kuiper MJ; Law RH; Buckle AM; Voskoboinik I; Bird PI; Trapani JA; Whisstock JC; Dunstone MA
    Cell Microbiol; 2008 Sep; 10(9):1765-74. PubMed ID: 18564372
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Profiles of ILY, VLY and Sm-hPAF interaction with human CD59.
    Kawaguchi Y; Tabata A; Nagamune H; Ohkura K
    Anticancer Res; 2013 Jul; 33(7):2901-4. PubMed ID: 23780977
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Interaction of Cholesterol with Perfringolysin O: What Have We Learned from Functional Analysis?
    Savinov SN; Heuck AP
    Toxins (Basel); 2017 Nov; 9(12):. PubMed ID: 29168745
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Structural studies of Streptococcus pyogenes streptolysin O provide insights into the early steps of membrane penetration.
    Feil SC; Ascher DB; Kuiper MJ; Tweten RK; Parker MW
    J Mol Biol; 2014 Feb; 426(4):785-92. PubMed ID: 24316049
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The Cholesterol-dependent Cytolysin Membrane-binding Interface Discriminates Lipid Environments of Cholesterol to Support β-Barrel Pore Insertion.
    Farrand AJ; Hotze EM; Sato TK; Wade KR; Wimley WC; Johnson AE; Tweten RK
    J Biol Chem; 2015 Jul; 290(29):17733-17744. PubMed ID: 26032415
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Environmental pH modulates inerolysin activity via post-binding blockade.
    Rampersaud R; Lewis EL; LaRocca TJ; Ratner AJ
    Sci Rep; 2018 Jan; 8(1):1542. PubMed ID: 29367601
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Multifaceted activity of listeriolysin O, the cholesterol-dependent cytolysin of Listeria monocytogenes.
    Seveau S
    Subcell Biochem; 2014; 80():161-95. PubMed ID: 24798012
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Intermedilysin-receptor interactions during assembly of the pore complex: assembly intermediates increase host cell susceptibility to complement-mediated lysis.
    LaChapelle S; Tweten RK; Hotze EM
    J Biol Chem; 2009 May; 284(19):12719-26. PubMed ID: 19293153
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Insights into the action of the superfamily of cholesterol-dependent cytolysins from studies of intermedilysin.
    Polekhina G; Giddings KS; Tweten RK; Parker MW
    Proc Natl Acad Sci U S A; 2005 Jan; 102(3):600-5. PubMed ID: 15637162
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Interaction of Macrophages and Cholesterol-Dependent Cytolysins: The Impact on Immune Response and Cellular Survival.
    Thapa R; Ray S; Keyel PA
    Toxins (Basel); 2020 Aug; 12(9):. PubMed ID: 32825096
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.