These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 37546876)

  • 41. Digital image analysis and machine learning-assisted prediction of neoadjuvant chemotherapy response in triple-negative breast cancer.
    Fisher TB; Saini G; Ts R; Krishnamurthy J; Bhattarai S; Callagy G; Webber M; Janssen EAM; Kong J; Aneja R
    Res Sq; 2023 Aug; ():. PubMed ID: 37645881
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Single-cell level deconvolution, convolution, and clustering in spatial transcriptomics by aligning spot level transcriptome to nuclear morphology.
    Zhu S; Kubota N; Wang S; Wang T; Xiao G; Hoshida Y
    bioRxiv; 2023 Dec; ():. PubMed ID: 38187541
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Diamond: a multi-modal DIA mass spectrometry data processing pipeline.
    Li C; Gao M; Yang W; Zhong C; Yu R
    Bioinformatics; 2021 Apr; 37(2):265-267. PubMed ID: 33416868
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Accurate single-molecule spot detection for image-based spatial transcriptomics with weakly supervised deep learning.
    Laubscher E; Wang X; Razin N; Dougherty T; Xu RJ; Ombelets L; Pao E; Graf W; Moffitt JR; Yue Y; Van Valen D
    Cell Syst; 2024 May; 15(5):475-482.e6. PubMed ID: 38754367
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Spatial transcriptomics tools allow for regional exploration of heterogeneous muscle pathology in the pre-clinical rabbit model of rotator cuff tear.
    Ruoss S; Esparza MC; Vasquez-Bolanos LS; Nasamran CA; Fisch KM; Engler AJ; Ward SR
    J Orthop Surg Res; 2022 Oct; 17(1):440. PubMed ID: 36195913
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Spatial transcriptomics prediction from histology jointly through Transformer and graph neural networks.
    Zeng Y; Wei Z; Yu W; Yin R; Yuan Y; Li B; Tang Z; Lu Y; Yang Y
    Brief Bioinform; 2022 Sep; 23(5):. PubMed ID: 35849101
    [TBL] [Abstract][Full Text] [Related]  

  • 47. SMASH: Scalable Method for Analyzing Spatial Heterogeneity of genes in spatial transcriptomics data.
    Seal S; Bitler BG; Ghosh D
    bioRxiv; 2023 Mar; ():. PubMed ID: 36993287
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Performant web-based interactive visualization tool for spatially-resolved transcriptomics experiments.
    Sriworarat C; Nguyen A; Eagles NJ; Collado-Torres L; Martinowich K; Maynard KR; Hicks SC
    bioRxiv; 2023 Feb; ():. PubMed ID: 36747726
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Performant web-based interactive visualization tool for spatially-resolved transcriptomics experiments.
    Sriworarat C; Nguyen A; Eagles NJ; Collado-Torres L; Martinowich K; Maynard KR; Hicks SC
    Biol Imaging; 2023; 3():e15. PubMed ID: 38487694
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Protecting RNA quality for spatial transcriptomics while improving immunofluorescent staining quality.
    Hahn N; Bens M; Kempfer M; Reißig C; Schmidl L; Geis C
    Front Neurosci; 2023; 17():1198154. PubMed ID: 37274189
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Reproducible Color Gamut of Hematoxylin and Eosin Stained Images in Standard Color Spaces.
    Cheng WC
    J Pathol Inform; 2020; 11():36. PubMed ID: 33343996
    [TBL] [Abstract][Full Text] [Related]  

  • 52. NFTest: automated testing of Nextflow pipelines.
    Patel Y; Zhu C; Yamaguchi TN; Bugh YZ; Tian M; Holmes A; Fitz-Gibbon ST; Boutros PC
    Bioinformatics; 2024 Feb; 40(2):. PubMed ID: 38341660
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Computational solutions for spatial transcriptomics.
    Kleino I; Frolovaitė P; Suomi T; Elo LL
    Comput Struct Biotechnol J; 2022; 20():4870-4884. PubMed ID: 36147664
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Genomic data analysis workflows for tumors from patient-derived xenografts (PDXs): challenges and guidelines.
    Woo XY; Srivastava A; Graber JH; Yadav V; Sarsani VK; Simons A; Beane G; Grubb S; Ananda G; Liu R; Stafford G; Chuang JH; Airhart SD; Karuturi RKM; George J; Bult CJ
    BMC Med Genomics; 2019 Jul; 12(1):92. PubMed ID: 31262303
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Spatial mapping of the total transcriptome by in situ polyadenylation.
    McKellar DW; Mantri M; Hinchman MM; Parker JSL; Sethupathy P; Cosgrove BD; De Vlaminck I
    Nat Biotechnol; 2023 Apr; 41(4):513-520. PubMed ID: 36329320
    [TBL] [Abstract][Full Text] [Related]  

  • 56. nf-rnaSeqCount: A Nextflow pipeline for obtaining raw read counts from RNA-seq data.
    Mpangase PT; Frost J; Tikly M; Ramsay M; Hazelhurst S
    S Afr Comput J; 2021 Dec; 33(2):. PubMed ID: 35574063
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Spacemake: processing and analysis of large-scale spatial transcriptomics data.
    Sztanka-Toth TR; Jens M; Karaiskos N; Rajewsky N
    Gigascience; 2022 Jul; 11():. PubMed ID: 35852420
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Whole slide imaging (WSI) scanner differences influence optical and computed properties of digitized prostate cancer histology.
    Duenweg SR; Bobholz SA; Lowman AK; Stebbins MA; Winiarz A; Nath B; Kyereme F; Iczkowski KA; LaViolette PS
    J Pathol Inform; 2023; 14():100321. PubMed ID: 37496560
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Visualizing the Interactions Shaping the Imaging of the Microenvironment in Human Cancers.
    Solimando AG; Desantis V; Da Vià MC
    Methods Mol Biol; 2023; 2572():67-79. PubMed ID: 36161408
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Analysis of synthetic cellular barcodes in the genome and transcriptome with BARtab and bartools.
    Holze H; Talarmain L; Fennell KA; Lam EY; Dawson MA; Vassiliadis D
    Cell Rep Methods; 2024 May; 4(5):100763. PubMed ID: 38670101
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.