BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 37546880)

  • 1. Splam: a deep-learning-based splice site predictor that improves spliced alignments.
    Chao KH; Mao A; Salzberg SL; Pertea M
    bioRxiv; 2023 Jul; ():. PubMed ID: 37546880
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Discerning novel splice junctions derived from RNA-seq alignment: a deep learning approach.
    Zhang Y; Liu X; MacLeod J; Liu J
    BMC Genomics; 2018 Dec; 19(1):971. PubMed ID: 30591034
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Splice2Deep: An ensemble of deep convolutional neural networks for improved splice site prediction in genomic DNA.
    Albaradei S; Magana-Mora A; Thafar M; Uludag M; Bajic VB; Gojobori T; Essack M; Jankovic BR
    Gene X; 2020 Dec; 5():100035. PubMed ID: 32550561
    [TBL] [Abstract][Full Text] [Related]  

  • 4. CI-SpliceAI-Improving machine learning predictions of disease causing splicing variants using curated alternative splice sites.
    Strauch Y; Lord J; Niranjan M; Baralle D
    PLoS One; 2022; 17(6):e0269159. PubMed ID: 35657932
    [TBL] [Abstract][Full Text] [Related]  

  • 5. RNA-Seq approach for accurate characterization of splicing efficiency of yeast introns.
    Xia X
    Methods; 2020 Apr; 176():25-33. PubMed ID: 30926533
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Read-Split-Run: an improved bioinformatics pipeline for identification of genome-wide non-canonical spliced regions using RNA-Seq data.
    Bai Y; Kinne J; Donham B; Jiang F; Ding L; Hassler JR; Kaufman RJ
    BMC Genomics; 2016 Aug; 17 Suppl 7(Suppl 7):503. PubMed ID: 27556805
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Splice2Deep: An ensemble of deep convolutional neural networks for improved splice site prediction in genomic DNA.
    Albaradei S; Magana-Mora A; Thafar M; Uludag M; Bajic VB; Gojobori T; Essack M; Jankovic BR
    Gene; 2020 Dec; 763S():100035. PubMed ID: 34493371
    [TBL] [Abstract][Full Text] [Related]  

  • 8. EASTR: Identifying and eliminating systematic alignment errors in multi-exon genes.
    Shinder I; Hu R; Ji HJ; Chao KH; Pertea M
    Nat Commun; 2023 Nov; 14(1):7223. PubMed ID: 37940654
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Splice site prediction in Arabidopsis thaliana pre-mRNA by combining local and global sequence information.
    Hebsgaard SM; Korning PG; Tolstrup N; Engelbrecht J; Rouzé P; Brunak S
    Nucleic Acids Res; 1996 Sep; 24(17):3439-52. PubMed ID: 8811101
    [TBL] [Abstract][Full Text] [Related]  

  • 10. DRANetSplicer: A Splice Site Prediction Model Based on Deep Residual Attention Networks.
    Liu X; Zhang H; Zeng Y; Zhu X; Zhu L; Fu J
    Genes (Basel); 2024 Mar; 15(4):. PubMed ID: 38674339
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Genome-wide mapping of alternative splicing in Arabidopsis thaliana.
    Filichkin SA; Priest HD; Givan SA; Shen R; Bryant DW; Fox SE; Wong WK; Mockler TC
    Genome Res; 2010 Jan; 20(1):45-58. PubMed ID: 19858364
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Multiplexed primer extension sequencing: A targeted RNA-seq method that enables high-precision quantitation of mRNA splicing isoforms and rare pre-mRNA splicing intermediates.
    Gildea MA; Dwyer ZW; Pleiss JA
    Methods; 2020 Apr; 176():34-45. PubMed ID: 31121301
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Predicting the effect of variants on splicing using Convolutional Neural Networks.
    Thanapattheerakul T; Engchuan W; Chan JH
    PeerJ; 2020; 8():e9470. PubMed ID: 32704450
    [TBL] [Abstract][Full Text] [Related]  

  • 14. m
    Parker MT; Soanes BK; Kusakina J; Larrieu A; Knop K; Joy N; Breidenbach F; Sherwood AV; Barton GJ; Fica SM; Davies BH; Simpson GG
    Elife; 2022 Nov; 11():. PubMed ID: 36409063
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An Arabidopsis pre-RNA processing8a (prp8a) missense allele restores splicing of a subset of mis-spliced mRNAs.
    Llinas RJ; Xiong JQ; Clark NM; Burkhart SE; Bartel B
    Plant Physiol; 2022 Aug; 189(4):2175-2192. PubMed ID: 35608297
    [TBL] [Abstract][Full Text] [Related]  

  • 16. 2passtools: two-pass alignment using machine-learning-filtered splice junctions increases the accuracy of intron detection in long-read RNA sequencing.
    Parker MT; Knop K; Barton GJ; Simpson GG
    Genome Biol; 2021 Mar; 22(1):72. PubMed ID: 33648554
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Single base-pair substitutions in exon-intron junctions of human genes: nature, distribution, and consequences for mRNA splicing.
    Krawczak M; Thomas NS; Hundrieser B; Mort M; Wittig M; Hampe J; Cooper DN
    Hum Mutat; 2007 Feb; 28(2):150-8. PubMed ID: 17001642
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparison of
    Jang W; Park J; Chae H; Kim M
    Int J Genomics; 2022; 2022():5265686. PubMed ID: 36275637
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Splice-site identification for exon prediction using bidirectional LSTM-RNN approach.
    Singh N; Nath R; Singh DB
    Biochem Biophys Rep; 2022 Jul; 30():101285. PubMed ID: 35663929
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mining Arabidopsis thaliana RNA-seq data with Integrated Genome Browser reveals stress-induced alternative splicing of the putative splicing regulator SR45a.
    Gulledge AA; Roberts AD; Vora H; Patel K; Loraine AE
    Am J Bot; 2012 Feb; 99(2):219-31. PubMed ID: 22291167
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.