These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 37546902)

  • 1. The transcriptional response in mosquitoes distinguishes between fungi and bacteria but not Gram types.
    Hixson B; Huot L; Morejon B; Yang X; Nagy P; Michel K; Buchon N
    bioRxiv; 2023 Jul; ():. PubMed ID: 37546902
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The transcriptional response in mosquitoes distinguishes between fungi and bacteria but not Gram types.
    Hixson B; Huot L; Morejon B; Yang X; Nagy P; Michel K; Buchon N
    BMC Genomics; 2024 Apr; 25(1):353. PubMed ID: 38594632
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Validation of Aedes aegypti Aag-2 cells as a model for insect immune studies.
    Barletta AB; Silva MC; Sorgine MH
    Parasit Vectors; 2012 Jul; 5():148. PubMed ID: 22827926
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Functional characterization of two clip domain serine proteases in innate immune responses of Aedes aegypti.
    Wang HC; Wang QH; Bhowmick B; Li YX; Han Q
    Parasit Vectors; 2021 Nov; 14(1):584. PubMed ID: 34819136
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Increased survivorship following bacterial infection by the mosquito Aedes aegypti as compared to Anopheles gambiae correlates with increased transcriptional induction of antimicrobial peptides.
    Coggins SA; Estévez-Lao TY; Hillyer JF
    Dev Comp Immunol; 2012 Jul; 37(3-4):390-401. PubMed ID: 22326457
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Wolbachia induces reactive oxygen species (ROS)-dependent activation of the Toll pathway to control dengue virus in the mosquito Aedes aegypti.
    Pan X; Zhou G; Wu J; Bian G; Lu P; Raikhel AS; Xi Z
    Proc Natl Acad Sci U S A; 2012 Jan; 109(1):E23-31. PubMed ID: 22123956
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fine pathogen discrimination within the APL1 gene family protects Anopheles gambiae against human and rodent malaria species.
    Mitri C; Jacques JC; Thiery I; Riehle MM; Xu J; Bischoff E; Morlais I; Nsango SE; Vernick KD; Bourgouin C
    PLoS Pathog; 2009 Sep; 5(9):e1000576. PubMed ID: 19750215
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The role of NF-kappaB factor REL2 in the Aedes aegypti immune response.
    Antonova Y; Alvarez KS; Kim YJ; Kokoza V; Raikhel AS
    Insect Biochem Mol Biol; 2009 Apr; 39(4):303-14. PubMed ID: 19552893
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cecropins contribute to Drosophila host defense against a subset of fungal and Gram-negative bacterial infection.
    Carboni AL; Hanson MA; Lindsay SA; Wasserman SA; Lemaitre B
    Genetics; 2022 Jan; 220(1):. PubMed ID: 34791204
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cloning, characterization, and expression of microRNAs from the Asian malaria mosquito, Anopheles stephensi.
    Mead EA; Tu Z
    BMC Genomics; 2008 May; 9():244. PubMed ID: 18500992
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Regulation of Antimicrobial Peptides in
    Zhang R; Zhu Y; Pang X; Xiao X; Zhang R; Cheng G
    Front Cell Infect Microbiol; 2017; 7():22. PubMed ID: 28217557
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Knock-down of REL2, but not defensin A, augments Aedes aegypti susceptibility to Bacillus subtilis and Escherichia coli.
    Magalhaes T; Leandro DC; Ayres CF
    Acta Trop; 2010 Feb; 113(2):167-73. PubMed ID: 19879852
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Innate immunity in
    Hixson B; Chen R; Buchon N
    Philos Trans R Soc Lond B Biol Sci; 2024 May; 379(1901):20230063. PubMed ID: 38497256
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Entomopathogenic fungal infection following immune gene silencing decreased behavioral and physiological fitness in Aedes aegypti mosquitoes.
    Mehmood N; Hassan A; Zhong X; Zhu Y; Ouyang G; Huang Q
    Pestic Biochem Physiol; 2023 Sep; 195():105535. PubMed ID: 37666588
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Pathogenicity of the Fungus, Aspergillus clavatus, isolated from the locust, Oedaleus senegalensis, against larvae of the mosquitoes Aedes aegypti, Anopheles gambiae and Culex quinquefasciatus.
    Seye F; Faye O; Ndiaye M; Njie E; Marie Afoutou J
    J Insect Sci; 2009; 9():1-7. PubMed ID: 20050773
    [TBL] [Abstract][Full Text] [Related]  

  • 16.
    Salcedo-Porras N; Noor S; Cai C; Oliveira PL; Lowenberger C
    Curr Res Insect Sci; 2021; 1():100006. PubMed ID: 36003603
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Functional implications of the peptidoglycan recognition proteins in the immunity of the yellow fever mosquito, Aedes aegypti.
    Wang S; Beerntsen BT
    Insect Mol Biol; 2015 Jun; 24(3):293-310. PubMed ID: 25588548
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Identification of microRNAs expressed in two mosquito vectors, Aedes albopictus and Culex quinquefasciatus.
    Skalsky RL; Vanlandingham DL; Scholle F; Higgs S; Cullen BR
    BMC Genomics; 2010 Feb; 11():119. PubMed ID: 20167119
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The Aedes aegypti IMD pathway is a critical component of the mosquito antifungal immune response.
    Ramirez JL; Muturi EJ; Barletta ABF; Rooney AP
    Dev Comp Immunol; 2019 Jun; 95():1-9. PubMed ID: 30582948
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mosquito-Plasmodium interactions in response to immune activation of the vector.
    Lowenberger CA; Kamal S; Chiles J; Paskewitz S; Bulet P; Hoffmann JA; Christensen BM
    Exp Parasitol; 1999 Jan; 91(1):59-69. PubMed ID: 9920043
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.