These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 37546943)

  • 21. Controlling Structural Bias in Intrinsically Disordered Proteins Using Solution Space Scanning.
    Holehouse AS; Sukenik S
    J Chem Theory Comput; 2020 Mar; 16(3):1794-1805. PubMed ID: 31999450
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Bayesian inference of protein ensembles from SAXS data.
    Antonov LD; Olsson S; Boomsma W; Hamelryck T
    Phys Chem Chem Phys; 2016 Feb; 18(8):5832-8. PubMed ID: 26548662
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Sequence-to-Conformation Relationships of Disordered Regions Tethered to Folded Domains of Proteins.
    Mittal A; Holehouse AS; Cohan MC; Pappu RV
    J Mol Biol; 2018 Aug; 430(16):2403-2421. PubMed ID: 29763584
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Low Complexity Induces Structure in Protein Regions Predicted as Intrinsically Disordered.
    Gonçalves-Kulik M; Mier P; Kastano K; Cortés J; Bernadó P; Schmid F; Andrade-Navarro MA
    Biomolecules; 2022 Aug; 12(8):. PubMed ID: 36008992
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Dynamic Studies on Intrinsically Disordered Regions of Two Paralogous Transcription Factors Reveal Rigid Segments with Important Biological Functions.
    Maiti S; Acharya B; Boorla VS; Manna B; Ghosh A; De S
    J Mol Biol; 2019 Mar; 431(7):1353-1369. PubMed ID: 30802457
    [TBL] [Abstract][Full Text] [Related]  

  • 26. De novo ensemble modeling suggests that AP2-binding to disordered regions can increase steric volume of Epsin but not Eps15.
    Jagannathan NS; Hogue CWV; Tucker-Kellogg L
    Pac Symp Biocomput; 2020; 25():183-194. PubMed ID: 31797596
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A structural entropy index to analyse local conformations in intrinsically disordered proteins.
    Akhila MV; Narwani TJ; Floch A; Maljković M; Bisoo S; Shinada NK; Kranjc A; Gelly JC; Srinivasan N; Mitić N; de Brevern AG
    J Struct Biol; 2020 Apr; 210(1):107464. PubMed ID: 31978465
    [TBL] [Abstract][Full Text] [Related]  

  • 28. TransDFL: Identification of Disordered Flexible Linkers in Proteins by Transfer Learning.
    Pang Y; Liu B
    Genomics Proteomics Bioinformatics; 2023 Apr; 21(2):359-369. PubMed ID: 36272675
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Utilizing Coarse-Grained Modeling and Monte Carlo Simulations to Evaluate the Conformational Ensemble of Intrinsically Disordered Proteins and Regions.
    Cragnell C; Rieloff E; Skepö M
    J Mol Biol; 2018 Aug; 430(16):2478-2492. PubMed ID: 29573987
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Ensemble modeling of protein disordered states: experimental restraint contributions and validation.
    Marsh JA; Forman-Kay JD
    Proteins; 2012 Feb; 80(2):556-72. PubMed ID: 22095648
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Conformational ensembles of intrinsically disordered proteins and flexible multidomain proteins.
    Thomasen FE; Lindorff-Larsen K
    Biochem Soc Trans; 2022 Feb; 50(1):541-554. PubMed ID: 35129612
    [TBL] [Abstract][Full Text] [Related]  

  • 32. DFLpred: High-throughput prediction of disordered flexible linker regions in protein sequences.
    Meng F; Kurgan L
    Bioinformatics; 2016 Jun; 32(12):i341-i350. PubMed ID: 27307636
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A monte carlo method for generating side chain structural ensembles.
    Bhowmick A; Head-Gordon T
    Structure; 2015 Jan; 23(1):44-55. PubMed ID: 25482539
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Molecular Dynamics Simulations Combined with Nuclear Magnetic Resonance and/or Small-Angle X-ray Scattering Data for Characterizing Intrinsically Disordered Protein Conformational Ensembles.
    Chan-Yao-Chong M; Durand D; Ha-Duong T
    J Chem Inf Model; 2019 May; 59(5):1743-1758. PubMed ID: 30840442
    [TBL] [Abstract][Full Text] [Related]  

  • 35. MMTSB Tool Set: enhanced sampling and multiscale modeling methods for applications in structural biology.
    Feig M; Karanicolas J; Brooks CL
    J Mol Graph Model; 2004 May; 22(5):377-95. PubMed ID: 15099834
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A Unified De Novo Approach for Predicting the Structures of Ordered and Disordered Proteins.
    Ferrie JJ; Petersson EJ
    J Phys Chem B; 2020 Jul; 124(27):5538-5548. PubMed ID: 32525675
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Flexible backbone sampling methods to model and design protein alternative conformations.
    Ollikainen N; Smith CA; Fraser JS; Kortemme T
    Methods Enzymol; 2013; 523():61-85. PubMed ID: 23422426
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Critical Assessment of Self-Consistency Checks in the All-Atom Molecular Dynamics Simulation of Intrinsically Disordered Proteins.
    Gaalswyk K; Haider A; Ghosh K
    J Chem Theory Comput; 2023 May; 19(10):2973-2984. PubMed ID: 37133846
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Information theoretic measures for quantifying sequence-ensemble relationships of intrinsically disordered proteins.
    Cohan MC; Ruff KM; Pappu RV
    Protein Eng Des Sel; 2019 Dec; 32(4):191-202. PubMed ID: 31375817
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Computational Methods to Predict Intrinsically Disordered Regions and Functional Regions in Them.
    Anbo H; Ota M; Fukuchi S
    Methods Mol Biol; 2023; 2627():231-245. PubMed ID: 36959451
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.