BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 37547003)

  • 1.
    McLean ZL; Gao D; Correia K; Roy JCL; Shibata S; Farnum IN; Valdepenas-Mellor Z; Rapuru M; Morini E; Ruliera J; Gillis T; Lucente D; Kleinstiver BP; Lee JM; MacDonald ME; Wheeler VC; Pinto RM; Gusella JF
    bioRxiv; 2023 Jul; ():. PubMed ID: 37547003
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Identification of genetic modifiers of Huntington's disease somatic CAG repeat instability by in vivo CRISPR-Cas9 genome editing.
    Mouro Pinto R; Murtha R; Azevedo A; Douglas C; Kovalenko M; Ulloa J; Crescenti S; Burch Z; Oliver E; Vitalo A; Mota-Silva E; Riggs MJ; Correia K; Elezi E; Demelo B; Carroll JB; Gillis T; Gusella JF; MacDonald ME; Wheeler VC
    bioRxiv; 2024 Jun; ():. PubMed ID: 38895438
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Promotion of somatic CAG repeat expansion by Fan1 knock-out in Huntington's disease knock-in mice is blocked by Mlh1 knock-out.
    Loupe JM; Pinto RM; Kim KH; Gillis T; Mysore JS; Andrew MA; Kovalenko M; Murtha R; Seong I; Gusella JF; Kwak S; Howland D; Lee R; Lee JM; Wheeler VC; MacDonald ME
    Hum Mol Genet; 2020 Nov; 29(18):3044-3053. PubMed ID: 32876667
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Interrupting sequence variants and age of onset in Huntington's disease: clinical implications and emerging therapies.
    Wright GEB; Black HF; Collins JA; Gall-Duncan T; Caron NS; Pearson CE; Hayden MR
    Lancet Neurol; 2020 Nov; 19(11):930-939. PubMed ID: 33098802
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A CAG repeat threshold for therapeutics targeting somatic instability in Huntington's disease.
    Aldous SG; Smith EJ; Landles C; Osborne GF; Cañibano-Pico M; Nita IM; Phillips J; Zhang Y; Jin B; Hirst MB; Benn CL; Bond BC; Edelmann W; Greene JR; Bates GP
    Brain; 2024 May; 147(5):1784-1798. PubMed ID: 38387080
    [TBL] [Abstract][Full Text] [Related]  

  • 6. FAN1 modifies Huntington's disease progression by stabilizing the expanded HTT CAG repeat.
    Goold R; Flower M; Moss DH; Medway C; Wood-Kaczmar A; Andre R; Farshim P; Bates GP; Holmans P; Jones L; Tabrizi SJ
    Hum Mol Genet; 2019 Feb; 28(4):650-661. PubMed ID: 30358836
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Subcellular Localization And Formation Of Huntingtin Aggregates Correlates With Symptom Onset And Progression In A Huntington'S Disease Model.
    Landles C; Milton RE; Ali N; Flomen R; Flower M; Schindler F; Gomez-Paredes C; Bondulich MK; Osborne GF; Goodwin D; Salsbury G; Benn CL; Sathasivam K; Smith EJ; Tabrizi SJ; Wanker EE; Bates GP
    Brain Commun; 2020; 2(2):fcaa066. PubMed ID: 32954323
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Modification of Huntington's disease by short tandem repeats.
    Hong EP; Ramos EM; Aziz NA; Massey TH; McAllister B; Lobanov S; Jones L; Holmans P; Kwak S; Orth M; Ciosi M; Lomeikaite V; Monckton DG; Long JD; Lucente D; Wheeler VC; Gillis T; MacDonald ME; Sequeiros J; Gusella JF; Lee JM
    Brain Commun; 2024; 6(2):fcae016. PubMed ID: 38449714
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Precise Excision of the CAG Tract from the Huntingtin Gene by Cas9 Nickases.
    Dabrowska M; Juzwa W; Krzyzosiak WJ; Olejniczak M
    Front Neurosci; 2018; 12():75. PubMed ID: 29535594
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Modifiers of Somatic Repeat Instability in Mouse Models of Friedreich Ataxia and the Fragile X-Related Disorders: Implications for the Mechanism of Somatic Expansion in Huntington's Disease.
    Zhao X; Kumari D; Miller CJ; Kim GY; Hayward B; Vitalo AG; Pinto RM; Usdin K
    J Huntingtons Dis; 2021; 10(1):149-163. PubMed ID: 33579860
    [TBL] [Abstract][Full Text] [Related]  

  • 11. New developments in Huntington's disease and other triplet repeat diseases: DNA repair turns to the dark side.
    Lahue RS
    Neuronal Signal; 2020 Dec; 4(4):NS20200010. PubMed ID: 33224521
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Investigation of the Influence of TBP CAG/CAA Repeats in Conjunction with HTT CAG Repeats on Huntington's Disease Age at Onset in a Brazilian Sample.
    da Silva IDS; Apolinário TA; de Andrade Agostinho L; Paiva CLA
    J Mol Neurosci; 2022 May; 72(5):1116-1124. PubMed ID: 35275350
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Base editing strategies to convert CAG to CAA diminish the disease-causing mutation in Huntington's disease.
    Choi DE; Shin JW; Zeng S; Hong EP; Jang JH; Loupe JM; Wheeler VC; Stutzman HE; Kleinstiver BP; Lee JM
    bioRxiv; 2023 Apr; ():. PubMed ID: 37162872
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mismatch repair genes Mlh1 and Mlh3 modify CAG instability in Huntington's disease mice: genome-wide and candidate approaches.
    Pinto RM; Dragileva E; Kirby A; Lloret A; Lopez E; St Claire J; Panigrahi GB; Hou C; Holloway K; Gillis T; Guide JR; Cohen PE; Li GM; Pearson CE; Daly MJ; Wheeler VC
    PLoS Genet; 2013 Oct; 9(10):e1003930. PubMed ID: 24204323
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A genetic association study of glutamine-encoding DNA sequence structures, somatic CAG expansion, and DNA repair gene variants, with Huntington disease clinical outcomes.
    Ciosi M; Maxwell A; Cumming SA; Hensman Moss DJ; Alshammari AM; Flower MD; Durr A; Leavitt BR; Roos RAC; ; ; Holmans P; Jones L; Langbehn DR; Kwak S; Tabrizi SJ; Monckton DG
    EBioMedicine; 2019 Oct; 48():568-580. PubMed ID: 31607598
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Identification and Optimization of RNA-Splicing Modulators as Huntingtin Protein-Lowering Agents for the Treatment of Huntington's Disease.
    Liu L; Malagu K; Haughan AF; Khetarpal V; Stott AJ; Esmieu W; Vater HD; Webster SJ; Van de Poël AJ; Clissold C; Cosgrove B; Sutton B; Spencer JA; Breccia P; Gancia E; Bonomo S; Ladduwahetty T; Lazari O; Patel H; Atton HC; Clifton S; Mota DM; Magnani D; O'Neill A; Stebbeds M; Macabuag N; Todd D; Herva ME; Mitchell P; Visser M; Compte Sancerni S; Grand Moursel L; da Silva M; Kritikou E; Heikkinen TT; Bolkvadze T; Fodale V; Spadafora D; Daldin M; Bresciani A; Mangette JE; Doherty EM; Lee MR; Herbst T; Monteagudo E; Macdonald D; Plotnikov NV; Chambers M; McAllister G; Muňoz-Sanjuan I; Dominguez C
    J Med Chem; 2023 Sep; 66(18):13205-13246. PubMed ID: 37712656
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Somatic CAG Repeat Stability in a Transgenic Sheep Model of Huntington's Disease.
    Handley RR; Reid SJ; Burch Z; Jacobsen JC; Gillis T; Correia K; Rudiger SR; McLaughlin CJ; Bawden CS; MacDonald ME; Wheeler VC; Snell RG
    J Huntingtons Dis; 2024; 13(1):33-40. PubMed ID: 38393920
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Quantification of age-dependent somatic CAG repeat instability in Hdh CAG knock-in mice reveals different expansion dynamics in striatum and liver.
    Lee JM; Pinto RM; Gillis T; St Claire JC; Wheeler VC
    PLoS One; 2011; 6(8):e23647. PubMed ID: 21897851
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Stoichiometry of base excision repair proteins correlates with increased somatic CAG instability in striatum over cerebellum in Huntington's disease transgenic mice.
    Goula AV; Berquist BR; Wilson DM; Wheeler VC; Trottier Y; Merienne K
    PLoS Genet; 2009 Dec; 5(12):e1000749. PubMed ID: 19997493
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A pathogenic mechanism in Huntington's disease involves small CAG-repeated RNAs with neurotoxic activity.
    Bañez-Coronel M; Porta S; Kagerbauer B; Mateu-Huertas E; Pantano L; Ferrer I; Guzmán M; Estivill X; Martí E
    PLoS Genet; 2012; 8(2):e1002481. PubMed ID: 22383888
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.