These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 37547057)

  • 1. A novel autoencoder approach to feature extraction with linear separability for high-dimensional data.
    Zheng J; Qu H; Li Z; Li L; Tang X; Guo F
    PeerJ Comput Sci; 2022; 8():e1061. PubMed ID: 37547057
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Anomaly detection for blueberry data using sparse autoencoder-support vector machine.
    Wei D; Zheng J; Qu H
    PeerJ Comput Sci; 2023; 9():e1214. PubMed ID: 37346526
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A hybrid anomaly detection method for high dimensional data.
    Zhang X; Wei P; Wang Q
    PeerJ Comput Sci; 2023; 9():e1199. PubMed ID: 37346598
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Separability-based multiscale basis selection and feature extraction for signal and image classification.
    Etemad K; Chellappa R
    IEEE Trans Image Process; 1998; 7(10):1453-65. PubMed ID: 18276211
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Robust dimensionality reduction via feature space to feature space distance metric learning.
    Li B; Fan ZT; Zhang XL; Huang DS
    Neural Netw; 2019 Apr; 112():1-14. PubMed ID: 30716617
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Hybrid Recommender System Based on Autoencoder and Latent Feature Analysis.
    Guo S; Liao X; Li G; Xian K; Li Y; Liang C
    Entropy (Basel); 2023 Jul; 25(7):. PubMed ID: 37510009
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Defect-Repairable Latent Feature Extraction of Driving Behavior via a Deep Sparse Autoencoder.
    Liu H; Taniguchi T; Takenaka K; Bando T
    Sensors (Basel); 2018 Feb; 18(2):. PubMed ID: 29462931
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Representation Learning: Recommendation With Knowledge Graph
    Geng Y; Xiao X; Sun X; Zhu Y
    Front Genet; 2022; 13():891265. PubMed ID: 35719384
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sparse autoencoder-based feature extraction from TOF-SIMS image data of human skin structures.
    Matsuda K; Aoyagi S
    Anal Bioanal Chem; 2022 Jan; 414(2):1177-1186. PubMed ID: 34729645
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Subject-based feature extraction by using fisher WPD-CSP in brain-computer interfaces.
    Yang B; Li H; Wang Q; Zhang Y
    Comput Methods Programs Biomed; 2016 Jun; 129():21-8. PubMed ID: 27084317
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Partially supervised speaker clustering.
    Tang H; Chu SM; Hasegawa-Johnson M; Huang TS
    IEEE Trans Pattern Anal Mach Intell; 2012 May; 34(5):959-71. PubMed ID: 21844626
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Prediction model of sparse autoencoder-based bidirectional LSTM for wastewater flow rate.
    Huang J; Yang S; Li J; Oh J; Kang H
    J Supercomput; 2023; 79(4):4412-4435. PubMed ID: 36188335
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Robust microarray data feature selection using a correntropy based distance metric learning approach.
    Vahabzadeh V; Moattar MH
    Comput Biol Med; 2023 Jul; 161():107056. PubMed ID: 37235945
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Feature extraction framework based on contrastive learning with adaptive positive and negative samples.
    Zhang H; Zhao S; Qiang W; Chen Y; Jing L
    Neural Netw; 2022 Dec; 156():244-257. PubMed ID: 36283288
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Autoencoder-based cluster ensembles for single-cell RNA-seq data analysis.
    Geddes TA; Kim T; Nan L; Burchfield JG; Yang JYH; Tao D; Yang P
    BMC Bioinformatics; 2019 Dec; 20(Suppl 19):660. PubMed ID: 31870278
    [TBL] [Abstract][Full Text] [Related]  

  • 16. RN-Autoencoder: Reduced Noise Autoencoder for classifying imbalanced cancer genomic data.
    Arafa A; El-Fishawy N; Badawy M; Radad M
    J Biol Eng; 2023 Jan; 17(1):7. PubMed ID: 36717866
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The Optimally Designed Variational Autoencoder Networks for Clustering and Recovery of Incomplete Multimedia Data.
    Yu X; Li H; Zhang Z; Gan C
    Sensors (Basel); 2019 Feb; 19(4):. PubMed ID: 30781499
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Two-Dimensional and Three-Dimensional Time-of-Flight Secondary Ion Mass Spectrometry Image Feature Extraction Using a Spatially Aware Convolutional Autoencoder.
    Gardner W; Winkler DA; Cutts SM; Torney SA; Pietersz GA; Muir BW; Pigram PJ
    Anal Chem; 2022 Jun; 94(22):7804-7813. PubMed ID: 35616489
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Modified Mahalanobis-Taguchi System based on proper orthogonal decomposition for high-dimensional-small-sample-size data classification.
    Mao T; Yu L; Zhang Y; Zhou L
    Math Biosci Eng; 2020 Dec; 18(1):426-444. PubMed ID: 33525100
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Auto-HMM-LMF: feature selection based method for prediction of drug response via autoencoder and hidden Markov model.
    Emdadi A; Eslahchi C
    BMC Bioinformatics; 2021 Jan; 22(1):33. PubMed ID: 33509079
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.