BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

174 related articles for article (PubMed ID: 37547082)

  • 1. Mitigating biomass composition uncertainties in flux balance analysis using ensemble representations.
    Choi YM; Choi DH; Lee YQ; Koduru L; Lewis NE; Lakshmanan M; Lee DY
    Comput Struct Biotechnol J; 2023; 21():3736-3745. PubMed ID: 37547082
    [TBL] [Abstract][Full Text] [Related]  

  • 2. What CHO is made of: Variations in the biomass composition of Chinese hamster ovary cell lines.
    Széliová D; Ruckerbauer DE; Galleguillos SN; Petersen LB; Natter K; Hanscho M; Troyer C; Causon T; Schoeny H; Christensen HB; Lee DY; Lewis NE; Koellensperger G; Hann S; Nielsen LK; Borth N; Zanghellini J
    Metab Eng; 2020 Sep; 61():288-300. PubMed ID: 32619503
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Determining the biomass composition of a sponge holobiont for flux analysis.
    Watson J; Degnan B; Degnan S; Krömer JO
    Methods Mol Biol; 2014; 1191():107-25. PubMed ID: 25178787
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Flux Balance Analysis of Plant Metabolism: The Effect of Biomass Composition and Model Structure on Model Predictions.
    Yuan H; Cheung CY; Hilbers PA; van Riel NA
    Front Plant Sci; 2016; 7():537. PubMed ID: 27200014
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Balancing biomass reaction stoichiometry and measured fluxes in flux balance analysis.
    von Kamp A; Klamt S
    Bioinformatics; 2023 Oct; 39(10):. PubMed ID: 37758251
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Improving the flux distributions simulated with genome-scale metabolic models of
    Pereira R; Nielsen J; Rocha I
    Metab Eng Commun; 2016 Dec; 3():153-163. PubMed ID: 29468121
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Flux Balance Analysis with Objective Function Defined by Proteomics Data-Metabolism of Mycobacterium tuberculosis Exposed to Mefloquine.
    Montezano D; Meek L; Gupta R; Bermudez LE; Bermudez JC
    PLoS One; 2015; 10(7):e0134014. PubMed ID: 26218987
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Resolving cell composition through simple measurements, genome-scale modeling, and a genetic algorithm.
    Senger RS; Nazem-Bokaee H
    Methods Mol Biol; 2013; 985():85-101. PubMed ID: 23417800
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Quantifying the propagation of parametric uncertainty on flux balance analysis.
    Dinh HV; Sarkar D; Maranas CD
    Metab Eng; 2022 Jan; 69():26-39. PubMed ID: 34718140
    [TBL] [Abstract][Full Text] [Related]  

  • 10. In silico co-factor balance estimation using constraint-based modelling informs metabolic engineering in Escherichia coli.
    de Arroyo Garcia L; Jones PR
    PLoS Comput Biol; 2020 Aug; 16(8):e1008125. PubMed ID: 32776925
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Estimating Metabolic Fluxes Using a Maximum Network Flexibility Paradigm.
    Megchelenbrink W; Rossell S; Huynen MA; Notebaart RA; Marchiori E
    PLoS One; 2015; 10(10):e0139665. PubMed ID: 26457579
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Predicting internal cell fluxes at sub-optimal growth.
    Schultz A; Qutub AA
    BMC Syst Biol; 2015 Apr; 9():18. PubMed ID: 25890056
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Flux balance analysis of metabolic networks for efficient engineering of microbial cell factories.
    Sen P
    Biotechnol Genet Eng Rev; 2022 Dec; ():1-34. PubMed ID: 36476223
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Construction and completion of flux balance models from pathway databases.
    Latendresse M; Krummenacker M; Trupp M; Karp PD
    Bioinformatics; 2012 Feb; 28(3):388-96. PubMed ID: 22262672
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The use of genome-scale metabolic network reconstruction to predict fluxes and equilibrium composition of N-fixing versus C-fixing cells in a diazotrophic cyanobacterium, Trichodesmium erythraeum.
    Gardner JJ; Boyle NR
    BMC Syst Biol; 2017 Jan; 11(1):4. PubMed ID: 28103880
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Experimental determination of Escherichia coli biomass composition for constraint-based metabolic modeling.
    Simensen V; Schulz C; Karlsen E; Bråtelund S; Burgos I; Thorfinnsdottir LB; García-Calvo L; Bruheim P; Almaas E
    PLoS One; 2022; 17(1):e0262450. PubMed ID: 35085271
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Macromolecular crowding: chemistry and physics meet biology (Ascona, Switzerland, 10-14 June 2012).
    Foffi G; Pastore A; Piazza F; Temussi PA
    Phys Biol; 2013 Aug; 10(4):040301. PubMed ID: 23912807
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparative determination of biomass composition in differentially active metabolic States.
    Chiu HC; Segrè D
    Genome Inform; 2008; 20():171-82. PubMed ID: 19425132
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Incorporation of flexible objectives and time-linked simulation with flux balance analysis.
    Birch EW; Udell M; Covert MW
    J Theor Biol; 2014 Mar; 345():12-21. PubMed ID: 24361328
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Improving the accuracy of flux balance analysis through the implementation of carbon availability constraints for intracellular reactions.
    Lularevic M; Racher AJ; Jaques C; Kiparissides A
    Biotechnol Bioeng; 2019 Sep; 116(9):2339-2352. PubMed ID: 31112296
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.