These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 3754745)

  • 21. Kinetic intermediate reveals staggered pH-dependent transitions along the membrane insertion pathway of the diphtheria toxin T-domain.
    Kyrychenko A; Posokhov YO; Rodnin MV; Ladokhin AS
    Biochemistry; 2009 Aug; 48(32):7584-94. PubMed ID: 19588969
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Gating of large toxin channels by pH.
    Hoch DH; Finkelstein A
    Ann N Y Acad Sci; 1985; 456():33-5. PubMed ID: 2418731
    [No Abstract]   [Full Text] [Related]  

  • 23. The diphtheria toxin channel-forming T-domain translocates its own NH2-terminal region and the catalytic domain across planar phospholipid bilayers.
    Finkelstein A; Oh KJ; Senzel L; Gordon M; Blaustein RO; Collier RJ
    Int J Med Microbiol; 2000 Oct; 290(4-5):435-40. PubMed ID: 11111923
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Structure function relationships in diphtheria toxin channels: II. A residue responsible for the channel's dependence on trans pH.
    Mindell JA; Silverman JA; Collier RJ; Finkelstein A
    J Membr Biol; 1994 Jan; 137(1):29-44. PubMed ID: 7516433
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Structure-function relationships in diphtheria toxin channels: III. Residues which affect the cis pH dependence of channel conductance.
    Mindell JA; Silverman JA; Collier RJ; Finkelstein A
    J Membr Biol; 1994 Jan; 137(1):45-57. PubMed ID: 7516434
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Diphtheria toxin conformational switching at acidic pH.
    Leka O; Vallese F; Pirazzini M; Berto P; Montecucco C; Zanotti G
    FEBS J; 2014 May; 281(9):2115-22. PubMed ID: 24628974
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The pH-dependent conformational change of diphtheria toxin.
    Dumont ME; Richards FM
    J Biol Chem; 1988 Feb; 263(4):2087-97. PubMed ID: 3339004
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Mechanism of insertion of diphtheria toxin: peptide entry and pore size determinations.
    Zalman LS; Wisnieski BJ
    Proc Natl Acad Sci U S A; 1984 Jun; 81(11):3341-5. PubMed ID: 6328510
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Microsecond Simulations of the Diphtheria Toxin Translocation Domain in Association with Anionic Lipid Bilayers.
    Flores-Canales JC; Kurnikova M
    J Phys Chem B; 2015 Sep; 119(36):12074-85. PubMed ID: 26305016
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Topology of diphtheria toxin in lipid vesicle membranes: a proteolysis study.
    Quertenmont P; Wattiez R; Falmagne P; Ruysschaert JM; Cabiaux V
    Mol Microbiol; 1996 Sep; 21(6):1283-96. PubMed ID: 8898396
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Primary structure of diphtheria toxin fragment B: structural similarities with lipid-binding domains.
    Lambotte P; Falmagne P; Capiau C; Zanen J; Ruysschaert JM; Dirkx J
    J Cell Biol; 1980 Dec; 87(3 Pt 1):837-40. PubMed ID: 7462325
    [TBL] [Abstract][Full Text] [Related]  

  • 32. pH-dependence of the phospholipid interaction of diphtheria-toxin fragments.
    Montecucco C; Schiavo G; Tomasi M
    Biochem J; 1985 Oct; 231(1):123-8. PubMed ID: 4062882
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Membrane translocation of charged residues at the tips of hydrophobic helices in the T domain of diphtheria toxin.
    Ren J; Sharpe JC; Collier RJ; London E
    Biochemistry; 1999 Jan; 38(3):976-84. PubMed ID: 9893993
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Evidence for direct insertion of fragments A and B of diphtheria toxin into model membranes.
    Hu VW; Holmes RK
    J Biol Chem; 1984 Oct; 259(19):12226-33. PubMed ID: 6480607
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Self-translocation of diphtheria toxin across model membranes.
    Jiang JX; Chung LA; London E
    J Biol Chem; 1991 Dec; 266(35):24003-10. PubMed ID: 1721061
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Conformational switching, refolding and membrane insertion of the diphtheria toxin translocation domain.
    Ladokhin AS; Kyrychenko A; Rodnin MV; Vasquez-Montes V
    Methods Enzymol; 2021; 649():341-370. PubMed ID: 33712192
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Reversible refolding of the diphtheria toxin T-domain on lipid membranes.
    Ladokhin AS; Legmann R; Collier RJ; White SH
    Biochemistry; 2004 Jun; 43(23):7451-8. PubMed ID: 15182188
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Channels formed by botulinum, tetanus, and diphtheria toxins in planar lipid bilayers: relevance to translocation of proteins across membranes.
    Hoch DH; Romero-Mira M; Ehrlich BE; Finkelstein A; DasGupta BR; Simpson LL
    Proc Natl Acad Sci U S A; 1985 Mar; 82(6):1692-6. PubMed ID: 3856850
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Locating a residue in the diphtheria toxin channel.
    Mindell JA; Silverman JA; Collier RJ; Finkelstein A
    Biophys J; 1992 Apr; 62(1):41-4. PubMed ID: 1376171
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Diphtheria toxin forms transmembrane channels in planar lipid bilayers.
    Donovan JJ; Simon MI; Draper RK; Montal M
    Proc Natl Acad Sci U S A; 1981 Jan; 78(1):172-6. PubMed ID: 6264431
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.