These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

206 related articles for article (PubMed ID: 37547471)

  • 1. A review of multi-omics data integration through deep learning approaches for disease diagnosis, prognosis, and treatment.
    Wekesa JS; Kimwele M
    Front Genet; 2023; 14():1199087. PubMed ID: 37547471
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Multimodal deep learning approaches for single-cell multi-omics data integration.
    Athaya T; Ripan RC; Li X; Hu H
    Brief Bioinform; 2023 Sep; 24(5):. PubMed ID: 37651607
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Predicting Deep Learning Based Multi-Omics Parallel Integration Survival Subtypes in Lung Cancer Using Reverse Phase Protein Array Data.
    Takahashi S; Asada K; Takasawa K; Shimoyama R; Sakai A; Bolatkan A; Shinkai N; Kobayashi K; Komatsu M; Kaneko S; Sese J; Hamamoto R
    Biomolecules; 2020 Oct; 10(10):. PubMed ID: 33086649
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Prediction of drug sensitivity based on multi-omics data using deep learning and similarity network fusion approaches.
    Liu XY; Mei XY
    Front Bioeng Biotechnol; 2023; 11():1156372. PubMed ID: 37139048
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A roadmap for multi-omics data integration using deep learning.
    Kang M; Ko E; Mersha TB
    Brief Bioinform; 2022 Jan; 23(1):. PubMed ID: 34791014
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The Application of Deep Learning in Cancer Prognosis Prediction.
    Zhu W; Xie L; Han J; Guo X
    Cancers (Basel); 2020 Mar; 12(3):. PubMed ID: 32150991
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Deep learning based feature-level integration of multi-omics data for breast cancer patients survival analysis.
    Tong L; Mitchel J; Chatlin K; Wang MD
    BMC Med Inform Decis Mak; 2020 Sep; 20(1):225. PubMed ID: 32933515
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Omics-based deep learning approaches for lung cancer decision-making and therapeutics development.
    Tran TO; Vo TH; Le NQK
    Brief Funct Genomics; 2024 May; 23(3):181-192. PubMed ID: 37519050
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Multi-omics integration method based on attention deep learning network for biomedical data classification.
    Gong P; Cheng L; Zhang Z; Meng A; Li E; Chen J; Zhang L
    Comput Methods Programs Biomed; 2023 Apr; 231():107377. PubMed ID: 36739624
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A review on omics-based biomarkers discovery for Alzheimer's disease from the bioinformatics perspectives: Statistical approach vs machine learning approach.
    Tan MS; Cheah PL; Chin AV; Looi LM; Chang SW
    Comput Biol Med; 2021 Dec; 139():104947. PubMed ID: 34678481
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Integrating multi-omics data through deep learning for accurate cancer prognosis prediction.
    Chai H; Zhou X; Zhang Z; Rao J; Zhao H; Yang Y
    Comput Biol Med; 2021 Jul; 134():104481. PubMed ID: 33989895
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A guide to multi-omics data collection and integration for translational medicine.
    Athieniti E; Spyrou GM
    Comput Struct Biotechnol J; 2023; 21():134-149. PubMed ID: 36544480
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Computational approaches for network-based integrative multi-omics analysis.
    Agamah FE; Bayjanov JR; Niehues A; Njoku KF; Skelton M; Mazandu GK; Ederveen THA; Mulder N; Chimusa ER; 't Hoen PAC
    Front Mol Biosci; 2022; 9():967205. PubMed ID: 36452456
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Machine learning approaches for predicting biomolecule-disease associations.
    Ding Y; Lei X; Liao B; Wu FX
    Brief Funct Genomics; 2021 Jul; 20(4):273-287. PubMed ID: 33554238
    [TBL] [Abstract][Full Text] [Related]  

  • 15. DeepOmix: A scalable and interpretable multi-omics deep learning framework and application in cancer survival analysis.
    Zhao L; Dong Q; Luo C; Wu Y; Bu D; Qi X; Luo Y; Zhao Y
    Comput Struct Biotechnol J; 2021; 19():2719-2725. PubMed ID: 34093987
    [TBL] [Abstract][Full Text] [Related]  

  • 16. DeepProg: an ensemble of deep-learning and machine-learning models for prognosis prediction using multi-omics data.
    Poirion OB; Jing Z; Chaudhary K; Huang S; Garmire LX
    Genome Med; 2021 Jul; 13(1):112. PubMed ID: 34261540
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The performance of deep generative models for learning joint embeddings of single-cell multi-omics data.
    Brombacher E; Hackenberg M; Kreutz C; Binder H; Treppner M
    Front Mol Biosci; 2022; 9():962644. PubMed ID: 36387277
    [TBL] [Abstract][Full Text] [Related]  

  • 18. AUTOSURV: INTERPRETABLE DEEP LEARNING FRAMEWORK FOR CANCER SURVIVAL ANALYSIS INCORPORATING CLINICAL AND MULTI-OMICS DATA.
    Jiang L; Xu C; Bai Y; Liu A; Gong Y; Wang YP; Deng HW
    Res Sq; 2023 Aug; ():. PubMed ID: 37609286
    [TBL] [Abstract][Full Text] [Related]  

  • 19. i-Modern: Integrated multi-omics network model identifies potential therapeutic targets in glioma by deep learning with interpretability.
    Pan X; Burgman B; Wu E; Huang JH; Sahni N; Stephen Yi S
    Comput Struct Biotechnol J; 2022; 20():3511-3521. PubMed ID: 35860408
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 11.