BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

193 related articles for article (PubMed ID: 3754760)

  • 1. Effect of allopurinol on caffeine disposition in man.
    Grant DM; Tang BK; Campbell ME; Kalow W
    Br J Clin Pharmacol; 1986 Apr; 21(4):454-8. PubMed ID: 3754760
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Xanthine oxidase inhibition by allopurinol affects the reliability of urinary caffeine metabolic ratios as markers for N-acetyltransferase 2 and CYP1A2 activities.
    Fuchs P; Haefeli WE; Ledermann HR; Wenk M
    Eur J Clin Pharmacol; 1999 Jan; 54(11):869-76. PubMed ID: 10027663
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Determination of caffeine metabolite for the evaluation of N-acetyltransferase, CYP1A2 and xanthine oxidase activities].
    Lu JF; Yi T; Cao XM; Zhuo HT; Ling SS
    Yao Xue Xue Bao; 1997 Nov; 32(11):813-8. PubMed ID: 11596199
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Racial and gender differences in N-acetyltransferase, xanthine oxidase, and CYP1A2 activities.
    Relling MV; Lin JS; Ayers GD; Evans WE
    Clin Pharmacol Ther; 1992 Dec; 52(6):643-58. PubMed ID: 1458773
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hypouricemic effect of allopurinol and the novel xanthine oxidase inhibitor TEI-6720 in chimpanzees.
    Komoriya K; Osada Y; Hasegawa M; Horiuchi H; Kondo S; Couch RC; Griffin TB
    Eur J Pharmacol; 1993 Dec; 250(3):455-60. PubMed ID: 8112406
    [TBL] [Abstract][Full Text] [Related]  

  • 6. In vivo evaluation of CYP1A2, CYP2A6, NAT-2 and xanthine oxidase activities in a Greek population sample by the RP-HPLC monitoring of caffeine metabolic ratios.
    Begas E; Kouvaras E; Tsakalof A; Papakosta S; Asprodini EK
    Biomed Chromatogr; 2007 Feb; 21(2):190-200. PubMed ID: 17221922
    [TBL] [Abstract][Full Text] [Related]  

  • 7. 1-Methylxanthine derived from theophylline as an in vivo biochemical probe of allopurinol effect.
    Birkett DJ; Miners JO; Day RO
    Br J Clin Pharmacol; 1991 Aug; 32(2):238-41. PubMed ID: 1931474
    [TBL] [Abstract][Full Text] [Related]  

  • 8. 1-Methylxanthine derived from caffeine as a pharmacodynamic probe of oxypurinol effect.
    Birkett DJ; Miners JO; Valente L; Lillywhite KJ; Day RO
    Br J Clin Pharmacol; 1997 Feb; 43(2):197-200. PubMed ID: 9131954
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Segregation analyses of four urinary caffeine metabolite ratios implicated in the determination of human acetylation phenotypes.
    Vincent-Viry M; Pontes ZB; Gueguen R; Galteau MM; Siest G
    Genet Epidemiol; 1994; 11(2):115-29. PubMed ID: 8013893
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Pharmacodynamics of oxypurinol after administration of allopurinol to healthy subjects.
    Graham S; Day RO; Wong H; McLachlan AJ; Bergendal L; Miners JO; Birkett DJ
    Br J Clin Pharmacol; 1996 Apr; 41(4):299-304. PubMed ID: 8730975
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The pharmacokinetics of injectable allopurinol in newborns with the hypoplastic left heart syndrome.
    McGaurn SP; Davis LE; Krawczeniuk MM; Murphy JD; Jacobs ML; Norwood WI; Clancy RR
    Pediatrics; 1994 Dec; 94(6 Pt 1):820-3. PubMed ID: 7970996
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Pharmacokinetic/Pharmacodynamic Modelling of Allopurinol, its Active Metabolite Oxypurinol, and Biomarkers Hypoxanthine, Xanthine and Uric Acid in Hypoxic-Ischemic Encephalopathy Neonates.
    Chu WY; Annink KV; Nijstad AL; Maiwald CA; Schroth M; Bakkali LE; van Bel F; Benders MJNL; van Weissenbruch MM; Hagen A; Franz AR; Dorlo TPC; Allegaert K; Huitema ADR;
    Clin Pharmacokinet; 2022 Feb; 61(2):321-333. PubMed ID: 34617261
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Two distinct pathways for metabolism of theophylline and caffeine are coexpressed in Pseudomonas putida CBB5.
    Yu CL; Louie TM; Summers R; Kale Y; Gopishetty S; Subramanian M
    J Bacteriol; 2009 Jul; 191(14):4624-32. PubMed ID: 19447909
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Allopurinol dosage selection: relationships between dose and plasma oxipurinol and urate concentrations and urinary urate excretion.
    Day RO; Miners JO; Birkett DJ; Whitehead A; Naidoo D; Hayes J; Savdie E
    Br J Clin Pharmacol; 1988 Oct; 26(4):423-8. PubMed ID: 3190992
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Caffeine as a metabolic probe: validation of its use for acetylator phenotyping.
    Tang BK; Kadar D; Qian L; Iriah J; Yip J; Kalow W
    Clin Pharmacol Ther; 1991 Jun; 49(6):648-57. PubMed ID: 2060254
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Phenotyping of N-acetyltransferase type 2 and xanthine oxidase with caffeine: when should urine samples be collected?
    Jetter A; Kinzig M; Rodamer M; Tomalik-Scharte D; Sörgel F; Fuhr U
    Eur J Clin Pharmacol; 2009 Apr; 65(4):411-7. PubMed ID: 19082994
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Oxypurinol as an inhibitor of xanthine oxidase-catalyzed production of superoxide radical.
    Spector T
    Biochem Pharmacol; 1988 Jan; 37(2):349-52. PubMed ID: 2829916
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of furosemide on renal excretion of oxypurinol and purine bases.
    Yamamoto T; Moriwaki Y; Takahashi S; Tsutsumi Z; Hada T
    Metabolism; 2001 Feb; 50(2):241-5. PubMed ID: 11229436
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of lactate infusion on renal transport of purine bases and oxypurinol.
    Yamamoto T; Moriwaki Y; Takahashi S; Nasako Y; Higashino K
    Nephron; 1993; 65(1):73-6. PubMed ID: 8413795
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Xanthine-containing calculi during allopurinol therapy.
    Kranen S; Keough D; Gordon RB; Emmerson BT
    J Urol; 1985 Apr; 133(4):658-9. PubMed ID: 3981718
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.