These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

108 related articles for article (PubMed ID: 37547657)

  • 1. Magnetic Resonance Parameter Mapping using Self-supervised Deep Learning with Model Reinforcement.
    Bian W; Jang A; Liu F
    ArXiv; 2023 Jul; ():. PubMed ID: 37547657
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Improving quantitative MRI using self-supervised deep learning with model reinforcement: Demonstration for rapid T1 mapping.
    Bian W; Jang A; Liu F
    Magn Reson Med; 2024 Jul; 92(1):98-111. PubMed ID: 38342980
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Magnetic resonance parameter mapping using model-guided self-supervised deep learning.
    Liu F; Kijowski R; El Fakhri G; Feng L
    Magn Reson Med; 2021 Jun; 85(6):3211-3226. PubMed ID: 33464652
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Deep model-based magnetic resonance parameter mapping network (DOPAMINE) for fast T1 mapping using variable flip angle method.
    Jun Y; Shin H; Eo T; Kim T; Hwang D
    Med Image Anal; 2021 May; 70():102017. PubMed ID: 33721693
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Quantitative MR Image Reconstruction Using Parameter-Specific Dictionary Learning With Adaptive Dictionary-Size and Sparsity-Level Choice.
    Kofler A; Kerkering KM; Goschel L; Fillmer A; Kolbitsch C
    IEEE Trans Biomed Eng; 2024 Feb; 71(2):388-399. PubMed ID: 37540614
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Multi-mask self-supervised learning for physics-guided neural networks in highly accelerated magnetic resonance imaging.
    Yaman B; Gu H; Hosseini SAH; Demirel OB; Moeller S; Ellermann J; Uğurbil K; Akçakaya M
    NMR Biomed; 2022 Dec; 35(12):e4798. PubMed ID: 35789133
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Streamlined magnetic resonance fingerprinting: Fast whole-brain coverage with deep-learning based parameter estimation.
    Khajehim M; Christen T; Tam F; Graham SJ
    Neuroimage; 2021 Sep; 238():118237. PubMed ID: 34091035
    [TBL] [Abstract][Full Text] [Related]  

  • 8. MANTIS: Model-Augmented Neural neTwork with Incoherent k-space Sampling for efficient MR parameter mapping.
    Liu F; Feng L; Kijowski R
    Magn Reson Med; 2019 Jul; 82(1):174-188. PubMed ID: 30860285
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A deep learning approach for magnetic resonance fingerprinting: Scaling capabilities and good training practices investigated by simulations.
    Barbieri M; Brizi L; Giampieri E; Solera F; Manners DN; Castellani G; Testa C; Remondini D
    Phys Med; 2021 Sep; 89():80-92. PubMed ID: 34352679
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Rapid MR relaxometry using deep learning: An overview of current techniques and emerging trends.
    Feng L; Ma D; Liu F
    NMR Biomed; 2022 Apr; 35(4):e4416. PubMed ID: 33063400
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Noise2Recon: Enabling SNR-robust MRI reconstruction with semi-supervised and self-supervised learning.
    Desai AD; Ozturkler BM; Sandino CM; Boutin R; Willis M; Vasanawala S; Hargreaves BA; Ré C; Pauly JM; Chaudhari AS
    Magn Reson Med; 2023 Nov; 90(5):2052-2070. PubMed ID: 37427449
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Deep learning-based motion quantification from k-space for fast model-based magnetic resonance imaging motion correction.
    Hossbach J; Splitthoff DN; Cauley S; Clifford B; Polak D; Lo WC; Meyer H; Maier A
    Med Phys; 2023 Apr; 50(4):2148-2161. PubMed ID: 36433748
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Deep supervised dictionary learning by algorithm unrolling-Application to fast 2D dynamic MR image reconstruction.
    Kofler A; Pali MC; Schaeffter T; Kolbitsch C
    Med Phys; 2023 May; 50(5):2939-2960. PubMed ID: 36565150
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A model-based MR parameter mapping network robust to substantial variations in acquisition settings.
    Lu Q; Li J; Lian Z; Zhang X; Feng Q; Chen W; Ma J; Feng Y
    Med Image Anal; 2024 May; 94():103148. PubMed ID: 38554550
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Simultaneously optimizing sampling pattern for joint acceleration of multi-contrast MRI using model-based deep learning.
    Seo S; Luu HM; Choi SH; Park SH
    Med Phys; 2022 Sep; 49(9):5964-5980. PubMed ID: 35678739
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Synthetic-to-real domain adaptation with deep learning for fitting the intravoxel incoherent motion model of diffusion-weighted imaging.
    Huang H; Liu B; Xu Y; Zhou W
    Med Phys; 2023 Mar; 50(3):1614-1622. PubMed ID: 36308503
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fast Whole-Brain MR Multi-Parametric Mapping with Scan-Specific Self-Supervised Networks.
    Heydari A; Ahmadi A; Kim TH; Bilgic B
    ArXiv; 2024 Aug; ():. PubMed ID: 39148933
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Self-Supervised Deep Unrolled Reconstruction Using Regularization by Denoising.
    Huang P; Zhang C; Zhang X; Li X; Dong L; Ying L
    IEEE Trans Med Imaging; 2024 Mar; 43(3):1203-1213. PubMed ID: 37962993
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Unsupervised learning of a deep neural network for metal artifact correction using dual-polarity readout gradients.
    Kwon K; Kim D; Kim B; Park H
    Magn Reson Med; 2020 Jan; 83(1):124-138. PubMed ID: 31403219
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Efficient Combination of CNN and Transformer for Dual-Teacher Uncertainty-guided Semi-supervised Medical Image Segmentation.
    Xiao Z; Su Y; Deng Z; Zhang W
    Comput Methods Programs Biomed; 2022 Nov; 226():107099. PubMed ID: 36116398
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.