These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

480 related articles for article (PubMed ID: 37547671)

  • 21. 3D-bioprinted cancer-on-a-chip: level-up organotypic in vitro models.
    Monteiro MV; Zhang YS; Gaspar VM; Mano JF
    Trends Biotechnol; 2022 Apr; 40(4):432-447. PubMed ID: 34556340
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Engineering Microfluidic Organoid-on-a-Chip Platforms.
    Yu F; Hunziker W; Choudhury D
    Micromachines (Basel); 2019 Feb; 10(3):. PubMed ID: 30818801
    [No Abstract]   [Full Text] [Related]  

  • 23. Organ-on-a-Chip: A Preclinical Microfluidic Platform for the Progress of Nanomedicine.
    Rodrigues RO; Sousa PC; Gaspar J; Bañobre-López M; Lima R; Minas G
    Small; 2020 Dec; 16(51):e2003517. PubMed ID: 33236819
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Organ-on-Chip Approaches for Intestinal 3D In Vitro Modeling.
    Pimenta J; Ribeiro R; Almeida R; Costa PF; da Silva MA; Pereira B
    Cell Mol Gastroenterol Hepatol; 2022; 13(2):351-367. PubMed ID: 34454168
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Engineering Cardiac Tissue for Advanced Heart-On-A-Chip Platforms.
    Chen X; Liu S; Han M; Long M; Li T; Hu L; Wang L; Huang W; Wu Y
    Adv Healthc Mater; 2024 Jan; 13(1):e2301338. PubMed ID: 37471526
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Advances in reconstructing intestinal functionalities in vitro: From two/three dimensional-cell culture platforms to human intestine-on-a-chip.
    Wang L; Wu J; Chen J; Dou W; Zhao Q; Han J; Liu J; Su W; Li A; Liu P; An Z; Xu C; Sun Y
    Talanta; 2021 May; 226():122097. PubMed ID: 33676654
    [TBL] [Abstract][Full Text] [Related]  

  • 27. 3D multicellular systems in disease modelling: From organoids to organ-on-chip.
    Goldrick C; Guri I; Herrera-Oropeza G; O'Brien-Gore C; Roy E; Wojtynska M; Spagnoli FM
    Front Cell Dev Biol; 2023; 11():1083175. PubMed ID: 36819106
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Bioengineering human skeletal muscle models: Recent advances, current challenges and future perspectives.
    Jiang Y; Torun T; Maffioletti SM; Serio A; Tedesco FS
    Exp Cell Res; 2022 Jul; 416(2):113133. PubMed ID: 35427601
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Role of In Vitro Models for Development of Ophthalmic Delivery Systems.
    Kutlehria S; Sachdeva MS
    Crit Rev Ther Drug Carrier Syst; 2021; 38(3):1-31. PubMed ID: 34348017
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Advanced in vitro models of vascular biology: Human induced pluripotent stem cells and organ-on-chip technology.
    Cochrane A; Albers HJ; Passier R; Mummery CL; van den Berg A; Orlova VV; van der Meer AD
    Adv Drug Deliv Rev; 2019 Feb; 140():68-77. PubMed ID: 29944904
    [TBL] [Abstract][Full Text] [Related]  

  • 31. 3D organ-on-a-chip: The convergence of microphysiological systems and organoids.
    Baptista LS; Porrini C; Kronemberger GS; Kelly DJ; Perrault CM
    Front Cell Dev Biol; 2022; 10():1043117. PubMed ID: 36478741
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Patient-Specific Organoid and Organ-on-a-Chip: 3D Cell-Culture Meets 3D Printing and Numerical Simulation.
    Zheng F; Xiao Y; Liu H; Fan Y; Dao M
    Adv Biol (Weinh); 2021 Jun; 5(6):e2000024. PubMed ID: 33856745
    [TBL] [Abstract][Full Text] [Related]  

  • 33. In vitro and in vivo translational models for rare liver diseases.
    Haugabook SJ; Ferrer M; Ottinger EA
    Biochim Biophys Acta Mol Basis Dis; 2019 May; 1865(5):1003-1018. PubMed ID: 30075192
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Modeling endodermal organ development and diseases using human pluripotent stem cell-derived organoids.
    Pan FC; Evans T; Chen S
    J Mol Cell Biol; 2020 Aug; 12(8):580-592. PubMed ID: 32652003
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Organ-on-a-chip systems for vascular biology.
    Mandrycky CJ; Howard CC; Rayner SG; Shin YJ; Zheng Y
    J Mol Cell Cardiol; 2021 Oct; 159():1-13. PubMed ID: 34118217
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Bioengineered 3D Models to Recapitulate Tissue Fibrosis.
    Sacchi M; Bansal R; Rouwkema J
    Trends Biotechnol; 2020 Jun; 38(6):623-636. PubMed ID: 31952833
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Bioengineering-inspired three-dimensional culture systems: Organoids to create tumor microenvironment.
    Saglam-Metiner P; Gulce-Iz S; Biray-Avci C
    Gene; 2019 Feb; 686():203-212. PubMed ID: 30481551
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Bioengineering liver microtissues for modeling non-alcoholic fatty liver disease.
    Aasadollahei N; Rezaei N; Golroo R; Agarwal T; Vosough M; Piryaei A
    EXCLI J; 2023; 22():367-391. PubMed ID: 37223084
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Current Strategies and Future Perspectives of Skin-on-a-Chip Platforms: Innovations, Technical Challenges and Commercial Outlook.
    Bal-Öztürk A; Miccoli B; Avci-Adali M; Mogtader F; Sharifi F; Çeçen B; Yaşayan G; Braeken D; Alarcin E
    Curr Pharm Des; 2018; 24(45):5437-5457. PubMed ID: 30727878
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Mimicking Epithelial Tissues in Three-Dimensional Cell Culture Models.
    Torras N; García-Díaz M; Fernández-Majada V; Martínez E
    Front Bioeng Biotechnol; 2018; 6():197. PubMed ID: 30619844
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 24.