These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
118 related articles for article (PubMed ID: 37547946)
1. Comparison between guide plate navigation and virtual fixtures in robot-assisted osteotomy. Yang Q; Weng X; Xia C; Shi C; Liu J; Liang C; Liu Y; Wang Y Comput Methods Biomech Biomed Engin; 2024 Aug; 27(11):1387-1397. PubMed ID: 37547946 [TBL] [Abstract][Full Text] [Related]
2. Robot-Assisted Augmented Reality (AR)-Guided Surgical Navigation for Periacetabular Osteotomy. Ding H; Sun W; Zheng G Sensors (Basel); 2024 Jul; 24(14):. PubMed ID: 39066150 [TBL] [Abstract][Full Text] [Related]
3. Intelligent electromagnetic navigation system for robot-assisted intraoral osteotomy in mandibular tumor resection: a model experiment. Zhao Z; Zhang Y; Lin L; Huang W; Xiao C; Liu J; Chai G Front Immunol; 2024; 15():1436276. PubMed ID: 39119338 [TBL] [Abstract][Full Text] [Related]
4. Computer-assisted and robot-assisted technologies to improve bone-cutting accuracy when integrated with a freehand process using an oscillating saw. Cartiaux O; Paul L; Docquier PL; Raucent B; Dombre E; Banse X J Bone Joint Surg Am; 2010 Sep; 92(11):2076-82. PubMed ID: 20810857 [TBL] [Abstract][Full Text] [Related]
5. Haptic robot-assisted surgery improves accuracy of wide resection of bone tumors: a pilot study. Khan F; Pearle A; Lightcap C; Boland PJ; Healey JH Clin Orthop Relat Res; 2013 Mar; 471(3):851-9. PubMed ID: 22911372 [TBL] [Abstract][Full Text] [Related]
7. The Feasibility of Robot-Assisted Chin Osteotomy on Skull Models: Comparison with Surgical Guides Technique. Wu J; Hui W; Huang J; Luan N; Lin Y; Zhang Y; Zhang S J Clin Med; 2022 Nov; 11(22):. PubMed ID: 36431284 [TBL] [Abstract][Full Text] [Related]
8. Open core control software for surgical robots. Arata J; Kozuka H; Kim HW; Takesue N; Vladimirov B; Sakaguchi M; Tokuda J; Hata N; Chinzei K; Fujimoto H Int J Comput Assist Radiol Surg; 2010 May; 5(3):211-20. PubMed ID: 20033506 [TBL] [Abstract][Full Text] [Related]
9. Design of a robot-assisted system for transforaminal percutaneous endoscopic lumbar surgeries: study protocol. Fan N; Yuan S; Du P; Zhu W; Li L; Hai Y; Ding H; Wang G; Zang L J Orthop Surg Res; 2020 Oct; 15(1):479. PubMed ID: 33076965 [TBL] [Abstract][Full Text] [Related]
10. A surgical navigated cutting guide for mandibular osteotomies: accuracy and reproducibility of an image-guided mandibular osteotomy. Ter Braak TP; Brouwer de Koning SG; van Alphen MJA; van der Heijden F; Schreuder WH; van Veen RLP; Karakullukcu MB Int J Comput Assist Radiol Surg; 2020 Oct; 15(10):1719-1725. PubMed ID: 32725399 [TBL] [Abstract][Full Text] [Related]
11. The influence of the da Vinci surgical robot on electromagnetic tracking in a clinical environment. Aguilera Saiz L; Groen HC; Heerink WJ; Ruers TJM J Robot Surg; 2024 Jan; 18(1):54. PubMed ID: 38280064 [TBL] [Abstract][Full Text] [Related]
12. The development and error analysis of a kinematic parameters based spatial positioning method for an orthopedic navigation robot system. Pei B; Zhu G; Wang Y; Qiao H; Chen X; Wang B; Li X; Zhang W; Liu W; Fan Y Int J Med Robot; 2017 Sep; 13(3):. PubMed ID: 27723229 [TBL] [Abstract][Full Text] [Related]
13. Design and implementation of a surgical planning system for robotic assisted mandible reconstruction with fibula free flap. Guo Y; Xu W; Tu P; Han J; Zhang C; Liu J; Chen X Int J Comput Assist Radiol Surg; 2022 Dec; 17(12):2291-2303. PubMed ID: 36166164 [TBL] [Abstract][Full Text] [Related]
14. Accuracy in planar cutting of bones: an ISO-based evaluation. Cartiaux O; Paul L; Docquier PL; Francq BG; Raucent B; Dombre E; Banse X Int J Med Robot; 2009 Mar; 5(1):77-84. PubMed ID: 19172588 [TBL] [Abstract][Full Text] [Related]
15. Improving accuracy of opening-wedge osteotomies of distal radius using a patient-specific ramp-guide technique. Roner S; Carrillo F; Vlachopoulos L; Schweizer A; Nagy L; Fuernstahl P BMC Musculoskelet Disord; 2018 Oct; 19(1):374. PubMed ID: 30322393 [TBL] [Abstract][Full Text] [Related]
16. Robot-guided osteotomy in fibula free flap mandibular reconstruction: a preclinical study. de Boutray M; Cuau L; Ohayon M; Garrel R; Poignet P; Zemiti N Int J Oral Maxillofac Surg; 2024 Apr; 53(4):343-346. PubMed ID: 37604757 [TBL] [Abstract][Full Text] [Related]
17. Robot-assisted augmented reality surgical navigation based on optical tracking for mandibular reconstruction surgery. Shao L; Li X; Fu T; Meng F; Zhu Z; Zhao R; Huo M; Xiao D; Fan J; Lin Y; Zhang T; Yang J Med Phys; 2024 Jan; 51(1):363-377. PubMed ID: 37431603 [TBL] [Abstract][Full Text] [Related]
18. Fully Automatic Robot-Assisted Surgery for Mandibular Angle Split Osteotomy. Sun M; Chai Y; Chai G; Zheng X J Craniofac Surg; 2020; 31(2):336-339. PubMed ID: 31232983 [TBL] [Abstract][Full Text] [Related]
19. Mandibular angle split osteotomy based on a novel augmented reality navigation using specialized robot-assisted arms--A feasibility study. Lin L; Shi Y; Tan A; Bogari M; Zhu M; Xin Y; Xu H; Zhang Y; Xie L; Chai G J Craniomaxillofac Surg; 2016 Feb; 44(2):215-23. PubMed ID: 26718052 [TBL] [Abstract][Full Text] [Related]
20. Preliminary study of the accuracy and safety of robot-assisted mandibular distraction osteogenesis with electromagnetic navigation in hemifacial microsomia using rabbit models. Zhang Z; Kim BS; Han W; Sun M; Chen X; Yan Y; Xu H; Chai G; Lin L Sci Rep; 2022 Nov; 12(1):19572. PubMed ID: 36379999 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]