These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
23. The Biomolecular Corona of Lipid Nanoparticles for Gene Therapy. Francia V; Schiffelers RM; Cullis PR; Witzigmann D Bioconjug Chem; 2020 Sep; 31(9):2046-2059. PubMed ID: 32786370 [TBL] [Abstract][Full Text] [Related]
24. Helper lipid structure influences protein adsorption and delivery of lipid nanoparticles to spleen and liver. Zhang R; El-Mayta R; Murdoch TJ; Warzecha CC; Billingsley MM; Shepherd SJ; Gong N; Wang L; Wilson JM; Lee D; Mitchell MJ Biomater Sci; 2021 Feb; 9(4):1449-1463. PubMed ID: 33404020 [TBL] [Abstract][Full Text] [Related]
25. On the Influence of Nucleic Acid Backbone Modifications on Lipid Nanoparticle Morphology. An K; Kurek D; Mahadeo M; Zhang Y; Thewalt JL; Cullis PR; Kulkarni JA Langmuir; 2022 Nov; 38(46):14036-14043. PubMed ID: 36367350 [TBL] [Abstract][Full Text] [Related]
26. Spectroscopy-Based Local Modeling Method for High-Throughput Quantification of Nucleic Acid Loading in Lipid Nanoparticles. Fan Y; Shi Z; Ma S; Razvi SZA; Fu Y; Chen T; Gruenhagen J; Zhang K Anal Chem; 2022 Jun; 94(25):9081-9090. PubMed ID: 35700415 [TBL] [Abstract][Full Text] [Related]
27. A robust post-insertion method for the preparation of targeted siRNA LNPs. Swart LE; Koekman CA; Seinen CW; Issa H; Rasouli M; Schiffelers RM; Heidenreich O Int J Pharm; 2022 May; 620():121741. PubMed ID: 35421533 [TBL] [Abstract][Full Text] [Related]
28. Fluorinated Lipid Nanoparticles for Enhancing mRNA Delivery Efficiency. Zhang H; Meng C; Yi X; Han J; Wang J; Liu F; Ling Q; Li H; Gu Z ACS Nano; 2024 Mar; 18(11):7825-7836. PubMed ID: 38452271 [TBL] [Abstract][Full Text] [Related]
29. Preparation of selective organ-targeting (SORT) lipid nanoparticles (LNPs) using multiple technical methods for tissue-specific mRNA delivery. Wang X; Liu S; Sun Y; Yu X; Lee SM; Cheng Q; Wei T; Gong J; Robinson J; Zhang D; Lian X; Basak P; Siegwart DJ Nat Protoc; 2023 Jan; 18(1):265-291. PubMed ID: 36316378 [TBL] [Abstract][Full Text] [Related]
30. Optimization of DOTAP/chol Cationic Lipid Nanoparticles for mRNA, pDNA, and Oligonucleotide Delivery. Sun M; Dang UJ; Yuan Y; Psaras AM; Osipitan O; Brooks TA; Lu F; Di Pasqua AJ AAPS PharmSciTech; 2022 May; 23(5):135. PubMed ID: 35534697 [TBL] [Abstract][Full Text] [Related]
31. Increasing the siRNA knockdown efficiency of lipid nanoparticles by morphological transformation with the use of dihydrosphingomyelin as a helper lipid. Hashimoto M; Yonezawa S; Furan S; Nitta C; Maeda N; Tomita K; Yokouchi A; Koide H; Asai T Biomater Sci; 2023 May; 11(9):3269-3277. PubMed ID: 36939181 [TBL] [Abstract][Full Text] [Related]
32. In Vivo Endothelial Cell Gene Silencing by siRNA-LNPs Tuned with Lipoamino Bundle Chemical and Ligand Targeting. Yazdi M; Pöhmerer J; Hasanzadeh Kafshgari M; Seidl J; Grau M; Höhn M; Vetter V; Hoch CC; Wollenberg B; Multhoff G; Bashiri Dezfouli A; Wagner E Small; 2024 Oct; 20(42):e2400643. PubMed ID: 38923700 [TBL] [Abstract][Full Text] [Related]
33. Breaking the final barrier: Evolution of cationic and ionizable lipid structure in lipid nanoparticles to escape the endosome. Mrksich K; Padilla MS; Mitchell MJ Adv Drug Deliv Rev; 2024 Nov; 214():115446. PubMed ID: 39293650 [TBL] [Abstract][Full Text] [Related]
34. Cytosolic protein delivery using pH-responsive, charge-reversible lipid nanoparticles. Hirai Y; Hirose H; Imanishi M; Asai T; Futaki S Sci Rep; 2021 Oct; 11(1):19896. PubMed ID: 34615928 [TBL] [Abstract][Full Text] [Related]
35. Development of Lipid Nanoparticles for the Delivery of Macromolecules Based on the Molecular Design of pH-Sensitive Cationic Lipids. Sato Y Chem Pharm Bull (Tokyo); 2021; 69(12):1141-1159. PubMed ID: 34853281 [TBL] [Abstract][Full Text] [Related]
36. A magnetic separation method for isolating and characterizing the biomolecular corona of lipid nanoparticles. Francia V; Zhang Y; Cheng MHY; Schiffelers RM; Witzigmann D; Cullis PR Proc Natl Acad Sci U S A; 2024 Mar; 121(11):e2307803120. PubMed ID: 38437542 [TBL] [Abstract][Full Text] [Related]
37. The development of an in vitro assay to screen lipid based nanoparticles for siRNA delivery. Zhang Y; Arrington L; Boardman D; Davis J; Xu Y; DiFelice K; Stirdivant S; Wang W; Budzik B; Bawiec J; Deng J; Beutner G; Seifried D; Stanton M; Gindy M; Leone A J Control Release; 2014 Jan; 174():7-14. PubMed ID: 24240015 [TBL] [Abstract][Full Text] [Related]
38. Key Design Features of Lipid Nanoparticles and Electrostatic Charge-Based Lipid Nanoparticle Targeting. Gyanani V; Goswami R Pharmaceutics; 2023 Apr; 15(4):. PubMed ID: 37111668 [TBL] [Abstract][Full Text] [Related]
39. Understanding structure-activity relationships of pH-sensitive cationic lipids facilitates the rational identification of promising lipid nanoparticles for delivering siRNAs in vivo. Sato Y; Hashiba K; Sasaki K; Maeki M; Tokeshi M; Harashima H J Control Release; 2019 Feb; 295():140-152. PubMed ID: 30610950 [TBL] [Abstract][Full Text] [Related]
40. Development of Lipidoid Nanoparticles for siRNA Delivery to Neural Cells. Khare P; Dave KM; Kamte YS; Manoharan MA; O'Donnell LA; Manickam DS AAPS J; 2021 Dec; 24(1):8. PubMed ID: 34873640 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]