BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 37548068)

  • 1. Enzyme-based kinetic modelling of ASC-GSH cycle during tomato fruit development reveals the importance of reducing power and ROS availability.
    Decros G; Dussarrat T; Baldet P; Cassan C; Cabasson C; Dieuaide-Noubhani M; Destailleur A; Flandin A; Prigent S; Mori K; Colombié S; Jorly J; Gibon Y; Beauvoit B; Pétriacq P
    New Phytol; 2023 Oct; 240(1):242-257. PubMed ID: 37548068
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dissecting the superoxide dismutase-ascorbate-glutathione-pathway in chloroplasts by metabolic modeling. Computer simulations as a step towards flux analysis.
    Polle A
    Plant Physiol; 2001 May; 126(1):445-62. PubMed ID: 11351106
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mitochondrial ascorbate-glutathione cycle and proteomic analysis of carbonylated proteins during tomato (Solanum lycopersicum) fruit ripening.
    López-Vidal O; Camejo D; Rivera-Cabrera F; Konigsberg M; Villa-Hernández JM; Mendoza-Espinoza JA; Pérez-Flores LJ; Sevilla F; Jiménez A; Díaz de León-Sánchez F
    Food Chem; 2016 Mar; 194():1064-72. PubMed ID: 26471654
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Is monodehydroascorbate reductase activity in leaf tissue critical for the maintenance of yield in tomato?
    Truffault V; Riqueau G; Garchery C; Gautier H; Stevens RG
    J Plant Physiol; 2018 Mar; 222():1-8. PubMed ID: 29287283
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Modelling central metabolic fluxes by constraint-based optimization reveals metabolic reprogramming of developing Solanum lycopersicum (tomato) fruit.
    Colombié S; Nazaret C; Bénard C; Biais B; Mengin V; Solé M; Fouillen L; Dieuaide-Noubhani M; Mazat JP; Beauvoit B; Gibon Y
    Plant J; 2015 Jan; 81(1):24-39. PubMed ID: 25279440
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Lighting the light reactions of photosynthesis by means of redox-responsive genetically encoded biosensors for photosynthetic intermediates.
    Molinari PE; Krapp AR; Zurbriggen MD; Carrillo N
    Photochem Photobiol Sci; 2023 Aug; 22(8):2005-2018. PubMed ID: 37195389
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Changes in oxidative processes and components of the antioxidant system during tomato fruit ripening.
    Jimenez A; Creissen G; Kular B; Firmin J; Robinson S; Verhoeyen M; Mullineaux P
    Planta; 2002 Mar; 214(5):751-8. PubMed ID: 11882944
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cadmium toxicity and its amelioration by kinetin in tomato seedlings vis-à-vis ascorbate-glutathione cycle.
    Singh S; Singh A; Srivastava PK; Prasad SM
    J Photochem Photobiol B; 2018 Jan; 178():76-84. PubMed ID: 29125985
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Involvement of Nitric Oxide and Melatonin Enhances Cadmium Resistance of Tomato Seedlings through Regulation of the Ascorbate-Glutathione Cycle and ROS Metabolism.
    Xu J; Wei Z; Lu X; Liu Y; Yu W; Li C
    Int J Mol Sci; 2023 May; 24(11):. PubMed ID: 37298477
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Glutathione-mediated regulation of nitric oxide, S-nitrosothiol and redox homeostasis confers cadmium tolerance by inducing transcription factors and stress response genes in tomato.
    Hasan MK; Liu C; Wang F; Ahammed GJ; Zhou J; Xu MX; Yu JQ; Xia XJ
    Chemosphere; 2016 Oct; 161():536-545. PubMed ID: 27472435
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Regulation of cadmium toxicity in roots of tomato by indole acetic acid with special emphasis on reactive oxygen species production and their scavenging.
    Khan MY; Prakash V; Yadav V; Chauhan DK; Prasad SM; Ramawat N; Singh VP; Tripathi DK; Sharma S
    Plant Physiol Biochem; 2019 Sep; 142():193-201. PubMed ID: 31301530
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Inuloxin A Inhibits Seedling Growth and Affects Redox System of
    Villani A; Zonno MC; de Leonardis S; Vurro M; Paciolla C
    Biomolecules; 2022 Feb; 12(2):. PubMed ID: 35204800
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The relationship between leaf rolling and ascorbate-glutathione cycle enzymes in apoplastic and symplastic areas of Ctenanthe setosa subjected to drought stress.
    Saruhan N; Terzi R; Saglam A; Kadioglu A
    Biol Res; 2009; 42(3):315-26. PubMed ID: 19915740
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Reduced mitochondrial and ascorbate-glutathione activity after artificial ageing in soybean seed.
    Xin X; Tian Q; Yin G; Chen X; Zhang J; Ng S; Lu X
    J Plant Physiol; 2014 Jan; 171(2):140-7. PubMed ID: 24331429
    [TBL] [Abstract][Full Text] [Related]  

  • 15. H
    Liu T; Hu X; Zhang J; Zhang J; Du Q; Li J
    BMC Plant Biol; 2018 Feb; 18(1):34. PubMed ID: 29448924
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Different involvement of the mitochondrial, plastidial and cytosolic ascorbate-glutathione redox enzymes in heat shock responses.
    Locato V; de Pinto MC; De Gara L
    Physiol Plant; 2009 Mar; 135(3):296-306. PubMed ID: 19236663
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Glutathione homeostasis as an important and novel factor controlling blossom-end rot development in calcium-deficient tomato fruits.
    Mestre TC; Garcia-Sanchez F; Rubio F; Martinez V; Rivero RM
    J Plant Physiol; 2012 Nov; 169(17):1719-27. PubMed ID: 22940289
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Antisense-mediated depletion of tomato chloroplast glutathione reductase enhances susceptibility to chilling stress.
    Shu DF; Wang LY; Duan M; Deng YS; Meng QW
    Plant Physiol Biochem; 2011 Oct; 49(10):1228-37. PubMed ID: 21530286
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Exogenous proline and glycinebetaine increase NaCl-induced ascorbate-glutathione cycle enzyme activities, and proline improves salt tolerance more than glycinebetaine in tobacco Bright Yellow-2 suspension-cultured cells.
    Hoque MA; Banu MN; Okuma E; Amako K; Nakamura Y; Shimoishi Y; Murata Y
    J Plant Physiol; 2007 Nov; 164(11):1457-68. PubMed ID: 17223225
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Pyridine nucleotide cycling and control of intracellular redox state in relation to poly (ADP-ribose) polymerase activity and nuclear localization of glutathione during exponential growth of Arabidopsis cells in culture.
    Pellny TK; Locato V; Vivancos PD; Markovic J; De Gara L; Pallardó FV; Foyer CH
    Mol Plant; 2009 May; 2(3):442-56. PubMed ID: 19825628
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.