These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 37548139)

  • 21. TiC/NiO Core/Shell Nanoarchitecture with Battery-Capacitive Synchronous Lithium Storage for High-Performance Lithium-Ion Battery.
    Huang H; Feng T; Gan Y; Fang M; Xia Y; Liang C; Tao X; Zhang W
    ACS Appl Mater Interfaces; 2015 Jun; 7(22):11842-8. PubMed ID: 25989321
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Facile fabrication of 3D porous MnO@GS/CNT architecture as advanced anode materials for high-performance lithium-ion battery.
    Wang J; Deng Q; Li M; Wu C; Jiang K; Hu Z; Chu J
    Nanotechnology; 2018 Aug; 29(31):315403. PubMed ID: 29757153
    [TBL] [Abstract][Full Text] [Related]  

  • 23. MOF-Derived Hierarchical MnO-Doped Fe
    He Z; Wang K; Zhu S; Huang LA; Chen M; Guo J; Pei S; Shao H; Wang J
    ACS Appl Mater Interfaces; 2018 Apr; 10(13):10974-10985. PubMed ID: 29537815
    [TBL] [Abstract][Full Text] [Related]  

  • 24. In Situ Generated Li
    Yan H; Wang H; Wang D; Li X; Gong Z; Yang Y
    Nano Lett; 2019 May; 19(5):3280-3287. PubMed ID: 31009570
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Molten-Salt-Assisted Synthesis of Hierarchical Porous MnO@Biocarbon Composites as Promising Electrode Materials for Supercapacitors and Lithium-Ion Batteries.
    Zhang H; Zhang Z; Luo JD; Qi XT; Yu J; Cai JX; Yang ZY
    ChemSusChem; 2019 Jan; 12(1):283-290. PubMed ID: 30376219
    [TBL] [Abstract][Full Text] [Related]  

  • 26. High Areal Capacity Li-Ion Storage of Binder-Free Metal Vanadate/Carbon Hybrid Anode by Ion-Exchange Reaction.
    Zhou C; Lu J; Hu M; Huang ZH; Kang F; Lv R
    Small; 2018 Aug; 14(35):e1801832. PubMed ID: 30066386
    [TBL] [Abstract][Full Text] [Related]  

  • 27. CO
    Zheng S; Tian Y; Li W; Wang B
    ACS Appl Mater Interfaces; 2022 Oct; 14(40):45526-45532. PubMed ID: 36166400
    [TBL] [Abstract][Full Text] [Related]  

  • 28. An interwoven network of MnO₂ nanowires and carbon nanotubes as the anode for bendable lithium-ion batteries.
    Ee SJ; Pang H; Mani U; Yan Q; Ting SL; Chen P
    Chemphyschem; 2014 Aug; 15(12):2445-9. PubMed ID: 24888436
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Nitrogen and Phosphorus Codoped Porous Carbon Framework as Anode Material for High Rate Lithium-Ion Batteries.
    Ma C; Deng C; Liao X; He Y; Ma Z; Xiong H
    ACS Appl Mater Interfaces; 2018 Oct; 10(43):36969-36975. PubMed ID: 30273484
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A 3D-Printed Proton Pseudocapacitor with Ultrahigh Mass Loading and Areal Energy Density for Fast Energy Storage at Low Temperature.
    Zhang M; Xu T; Wang D; Yao T; Xu Z; Liu Q; Shen L; Yu Y
    Adv Mater; 2023 Jun; 35(23):e2209963. PubMed ID: 36626913
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Evidence of covalent synergy in silicon-sulfur-graphene yielding highly efficient and long-life lithium-ion batteries.
    Hassan FM; Batmaz R; Li J; Wang X; Xiao X; Yu A; Chen Z
    Nat Commun; 2015 Oct; 6():8597. PubMed ID: 26497228
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Bicontinuous phase separation of lithium-ion battery electrodes for ultrahigh areal loading.
    Lee JT; Jo C; De Volder M
    Proc Natl Acad Sci U S A; 2020 Sep; 117(35):21155-21161. PubMed ID: 32817417
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Enabling High-Areal-Capacity Lithium-Sulfur Batteries: Designing Anisotropic and Low-Tortuosity Porous Architectures.
    Li Y; Fu KK; Chen C; Luo W; Gao T; Xu S; Dai J; Pastel G; Wang Y; Liu B; Song J; Chen Y; Yang C; Hu L
    ACS Nano; 2017 May; 11(5):4801-4807. PubMed ID: 28485923
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A 3D Nitrogen-Doped Graphene/TiN Nanowires Composite as a Strong Polysulfide Anchor for Lithium-Sulfur Batteries with Enhanced Rate Performance and High Areal Capacity.
    Li Z; He Q; Xu X; Zhao Y; Liu X; Zhou C; Ai D; Xia L; Mai L
    Adv Mater; 2018 Nov; 30(45):e1804089. PubMed ID: 30259567
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Dual Vertically Aligned Electrode-Inspired High-Capacity Lithium Batteries.
    Mu Y; Chen Y; Wu B; Zhang Q; Lin M; Zeng L
    Adv Sci (Weinh); 2022 Oct; 9(30):e2203321. PubMed ID: 35999430
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Encapsulation of MnO nanocrystals in electrospun carbon nanofibers as high-performance anode materials for lithium-ion batteries.
    Liu B; Hu X; Xu H; Luo W; Sun Y; Huang Y
    Sci Rep; 2014 Mar; 4():4229. PubMed ID: 24598639
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Marriage of an Ether-Based Electrolyte with Hard Carbon Anodes Creates Superior Sodium-Ion Batteries with High Mass Loading.
    He Y; Bai P; Gao S; Xu Y
    ACS Appl Mater Interfaces; 2018 Dec; 10(48):41380-41388. PubMed ID: 30403338
    [TBL] [Abstract][Full Text] [Related]  

  • 38. In Situ Wrapping Si Nanoparticles with 2D Carbon Nanosheets as High-Areal-Capacity Anode for Lithium-Ion Batteries.
    Yan L; Liu J; Wang Q; Sun M; Jiang Z; Liang C; Pan F; Lin Z
    ACS Appl Mater Interfaces; 2017 Nov; 9(44):38159-38164. PubMed ID: 29053916
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Uniform Deposition and Effective Confinement of Lithium in Three-Dimensional Interconnected Microchannels for Stable Lithium Metal Anodes.
    Zhang J; Su Z; Jin J; Yang S; Yu A; Li G
    ACS Appl Mater Interfaces; 2021 Aug; 13(33):39311-39321. PubMed ID: 34370433
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Two Birds One Stone: Graphene Assisted Reaction Kinetics and Ionic Conductivity in Phthalocyanine-Based Covalent Organic Framework Anodes for Lithium-ion Batteries.
    Zhao J; Zhou M; Chen J; Wang L; Zhang Q; Zhong S; Xie H; Li Y
    Small; 2023 Nov; 19(44):e2303353. PubMed ID: 37391276
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.