BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 37548425)

  • 1. An impedance flow cytometry with integrated dual microneedle for electrical properties characterization of single cell.
    Mansor MA; Ahmad MR; Petrů M; Rahimian Koloor SS
    Artif Cells Nanomed Biotechnol; 2023 Dec; 51(1):371-383. PubMed ID: 37548425
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Microfluidic Device Integrating Impedance Flow Cytometry and Electric Impedance Spectroscopy for High-Efficiency Single-Cell Electrical Property Measurement.
    Feng Y; Huang L; Zhao P; Liang F; Wang W
    Anal Chem; 2019 Dec; 91(23):15204-15212. PubMed ID: 31702127
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Microfluidic impedance flow cytometry enabling high-throughput single-cell electrical property characterization.
    Chen J; Xue C; Zhao Y; Chen D; Wu MH; Wang J
    Int J Mol Sci; 2015 Apr; 16(5):9804-30. PubMed ID: 25938973
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Development of microfluidic impedance cytometry enabling the quantification of specific membrane capacitance and cytoplasm conductivity from 100,000 single cells.
    Zhao Y; Wang K; Chen D; Fan B; Xu Y; Ye Y; Wang J; Chen J; Huang C
    Biosens Bioelectron; 2018 Jul; 111():138-143. PubMed ID: 29665553
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Microfluidic characterization of specific membrane capacitance and cytoplasm conductivity of single cells.
    Zheng Y; Shojaei-Baghini E; Wang C; Sun Y
    Biosens Bioelectron; 2013 Apr; 42():496-502. PubMed ID: 23246657
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Microfluidic impedance cytometry device with N-shaped electrodes for lateral position measurement of single cells/particles.
    Yang D; Ai Y
    Lab Chip; 2019 Nov; 19(21):3609-3617. PubMed ID: 31517354
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dielectric spectroscopy in a micromachined flow cytometer: theoretical and practical considerations.
    Gawad S; Cheung K; Seger U; Bertsch A; Renaud P
    Lab Chip; 2004 Jun; 4(3):241-51. PubMed ID: 15159786
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Label-Free and Simultaneous Mechanical and Electrical Characterization of Single Plant Cells Using Microfluidic Impedance Flow Cytometry.
    Han Z; Chen L; Zhang S; Wang J; Duan X
    Anal Chem; 2020 Nov; 92(21):14568-14575. PubMed ID: 32911928
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Impedance-Based Multimodal Electrical-Mechanical Intrinsic Flow Cytometry.
    Feng Y; Zhu J; Chai H; He W; Huang L; Wang W
    Small; 2023 Nov; 19(45):e2303416. PubMed ID: 37438542
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Floating-Electrode-Enabled Impedance Cytometry for Single-Cell 3D Localization.
    Fang Q; Feng Y; Zhu J; Huang L; Wang W
    Anal Chem; 2023 Apr; 95(15):6374-6382. PubMed ID: 36996369
    [TBL] [Abstract][Full Text] [Related]  

  • 11. High-Efficiency Single-Cell Electrical Impedance Spectroscopy.
    Feng Y; Huang L; Zhao P; Liang F; Wang W
    Methods Mol Biol; 2023; 2644():81-97. PubMed ID: 37142917
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Single cell electric impedance topography: mapping membrane capacitance.
    Dharia S; Ayliffe HE; Rabbitt RD
    Lab Chip; 2009 Dec; 9(23):3370-7. PubMed ID: 19904403
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Impedance spectroscopy flow cytometry: on-chip label-free cell differentiation.
    Cheung K; Gawad S; Renaud P
    Cytometry A; 2005 Jun; 65(2):124-32. PubMed ID: 15825181
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Single Cell Electrical Characterization Techniques.
    Mansor MA; Ahmad MR
    Int J Mol Sci; 2015 Jun; 16(6):12686-712. PubMed ID: 26053399
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Recent Advances in Electrical Impedance Sensing Technology for Single-Cell Analysis.
    Zhang Z; Huang X; Liu K; Lan T; Wang Z; Zhu Z
    Biosensors (Basel); 2021 Nov; 11(11):. PubMed ID: 34821686
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A portable impedance microflow cytometer for measuring cellular response to hypoxia.
    Dieujuste D; Qiang Y; Du E
    Biotechnol Bioeng; 2021 Oct; 118(10):4041-4051. PubMed ID: 34232511
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Label-free whole blood cell differentiation based on multiple frequency AC impedance and light scattering analysis in a micro flow cytometer.
    Simon P; Frankowski M; Bock N; Neukammer J
    Lab Chip; 2016 Jun; 16(12):2326-38. PubMed ID: 27229300
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A neural network approach for real-time particle/cell characterization in microfluidic impedance cytometry.
    Honrado C; McGrath JS; Reale R; Bisegna P; Swami NS; Caselli F
    Anal Bioanal Chem; 2020 Jun; 412(16):3835-3845. PubMed ID: 32189012
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Lab-On-A-Chip Device for Yeast Cell Characterization in Low-Conductivity Media Combining Cytometry and Bio-Impedance.
    Claudel J; Alves De Araujo AL; Nadi M; Kourtiche D
    Sensors (Basel); 2019 Jul; 19(15):. PubMed ID: 31370234
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Microfluidic diagnostic tool for the developing world: contactless impedance flow cytometry.
    Emaminejad S; Javanmard M; Dutton RW; Davis RW
    Lab Chip; 2012 Nov; 12(21):4499-507. PubMed ID: 22971813
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.