BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 37548630)

  • 21. A new method of scaling up free flow electrophoresis.
    Painuly P; Roman MC
    Appl Theor Electrophor; 1993; 3(3-4):119-27. PubMed ID: 8390297
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Peak dispersion and contributions to plate height in nonaqueous capillary electrophoresis at high electric field strengths: propanol as background electrolyte solvent.
    Palonen S; Porras SP; Jussila M; Riekkola ML
    Electrophoresis; 2003 May; 24(10):1565-76. PubMed ID: 12761786
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Peak broadening in capillary zone electrophoresis.
    Gas B; Stedrý M; Kenndler E
    Electrophoresis; 1997 Nov; 18(12-13):2123-33. PubMed ID: 9456027
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Mid-scale free-flow electrophoresis with gravity-induced uniform flow of background buffer in chamber for the separation of cells and proteins.
    Dong YC; Shao J; Yin XY; Fan LY; Cao CX
    J Sep Sci; 2011 Jul; 34(14):1683-91. PubMed ID: 21695687
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Negative-pressure-induced collector for a self-balance free-flow electrophoresis device.
    Yang CZ; Yan J; Zhang Q; Guo CG; Kong FZ; Cao CX; Fan LY; Jin XQ
    J Sep Sci; 2014 Jun; 37(11):1359-63. PubMed ID: 24648284
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Free flow electrophoresis device for continuous on-line separation in analytical systems. An application in biochemical detection.
    Mazereeuw M; de Best CM; Tjaden UR; Irth H; van der Greef J
    Anal Chem; 2000 Aug; 72(16):3881-6. PubMed ID: 10959977
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Fast electrophoretic separation optimization using gradient micro free-flow electrophoresis.
    Fonslow BR; Bowser MT
    Anal Chem; 2008 May; 80(9):3182-9. PubMed ID: 18351751
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A simple preparative free-flow electrophoresis joined with gratis gravity: I. Gas cushion injector and self-balance collector instead of multiple channel pump.
    Chen S; Palmer JF; Zhang W; Shao J; Li S; Fan LY; Sun R; Dong YC; Cao CX
    Electrophoresis; 2009 Jun; 30(11):1998-2007. PubMed ID: 19517447
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Investigating peak dispersion in free-flow counterflow gradient focusing.
    Courtney M; Glawdel T; Ren CL
    Electrophoresis; 2022 Mar; 43(5-6):776-784. PubMed ID: 34679205
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Diffusion as major source of band broadening in field-amplified sample stacking under negligible electroosmotic flow velocity conditions.
    Huhn C; Pyell U
    J Chromatogr A; 2010 Jun; 1217(26):4476-86. PubMed ID: 20452606
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Peak dispersion and contributions to plate height in nonaqueous capillary electrophoresis at high electric field strengths: ethanol as background electrolyte solvent.
    Palonen S; Jussila M; Porras SP; Riekkola ML
    Electrophoresis; 2004 Jan; 25(2):344-54. PubMed ID: 14743487
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Up-scaling capillary zone electrophoresis separations of polydisperse anionic polyelectrolytes with preparative free-flow electrophoresis exemplified with a soil fulvic acid.
    Junkers J; Schmitt-Kopplin P; Munch JC; Kettrup A
    Electrophoresis; 2002 Sep; 23(17):2872-9. PubMed ID: 12207294
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Free-flow zone electrophoresis and isoelectric focusing using a microfabricated glass device with ion permeable membranes.
    Kohlheyer D; Besselink GA; Schlautmann S; Schasfoort RB
    Lab Chip; 2006 Mar; 6(3):374-80. PubMed ID: 16511620
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Diffusion, Joule heating, and band broadening in capillary gel electrophoresis of DNA.
    Slater GW; Mayer P; Grossman PD
    Electrophoresis; 1995 Jan; 16(1):75-83. PubMed ID: 7737094
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Quantitative investigation of resolution increase of free-flow electrophoresis via simple interval sample injection and separation.
    Shao J; Fan LY; Cao CX; Huang XQ; Xu YQ
    Electrophoresis; 2012 Jul; 33(14):2065-74. PubMed ID: 22821481
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Scaling behavior in on-chip field-amplified sample stacking.
    Dubey K; Gupta A; Bahga SS
    Electrophoresis; 2019 Mar; 40(5):730-739. PubMed ID: 30628102
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Study of zone broadening in optically gated high-speed capillary electrophoresis.
    Moore AW; Jorgenson JW
    Anal Chem; 1993 Dec; 65(24):3550-60. PubMed ID: 8311245
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Anion separations with pressure-assisted capillary electrophoresis using a sequential injection analysis manifold and contactless conductivity detection.
    Mai TD; Hauser PC
    Electrophoresis; 2011 Nov; 32(21):3000-7. PubMed ID: 21997519
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A simple and highly stable free-flow electrophoresis device with thermoelectric cooling system.
    Yan J; Guo CG; Liu XP; Kong FZ; Shen QY; Yang CZ; Li J; Cao CX; Jin XQ
    J Chromatogr A; 2013 Dec; 1321():119-26. PubMed ID: 24246174
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Enhancing the Resolution of Micro Free Flow Electrophoresis through Spatially Controlled Sample Injection.
    Saar KL; Müller T; Charmet J; Challa PK; Knowles TPJ
    Anal Chem; 2018 Aug; 90(15):8998-9005. PubMed ID: 29938505
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.