These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
130 related articles for article (PubMed ID: 37549219)
1. The green novel approach in hydrolysis of pistachio shell into xylose by microwave-assisted high-pressure CO Hazal F; Özbek HN; Göğüş F; Yanık DK J Sci Food Agric; 2024 Jan; 104(1):116-124. PubMed ID: 37549219 [TBL] [Abstract][Full Text] [Related]
2. Acid-catalyzed conversion of xylose, xylan and straw into furfural by microwave-assisted reaction. Yemiş O; Mazza G Bioresour Technol; 2011 Aug; 102(15):7371-8. PubMed ID: 21620690 [TBL] [Abstract][Full Text] [Related]
3. Optimization with Response Surface Methodology of Microwave-Assisted Conversion of Xylose to Furfural. Padilla-Rascón C; Romero-García JM; Ruiz E; Castro E Molecules; 2020 Aug; 25(16):. PubMed ID: 32781612 [TBL] [Abstract][Full Text] [Related]
4. Environmentally Friendly Approach to Pectin Extraction from Grapefruit Peel: Microwave-Assisted High-Pressure CO Öztürk T; Özbek HN; Koçak Yanık D Foods; 2024 Feb; 13(3):. PubMed ID: 38338611 [TBL] [Abstract][Full Text] [Related]
5. Synthesis of furfural from xylose, xylan, and biomass using AlCl3·6H2O in biphasic media via xylose isomerization to xylulose. Yang Y; Hu CW; Abu-Omar MM ChemSusChem; 2012 Feb; 5(2):405-10. PubMed ID: 22315196 [TBL] [Abstract][Full Text] [Related]
6. The optimization of dilute acid hydrolysis of cotton stalk in xylose production. Akpinar O; Levent O; Bostanci S; Bakir U; Yilmaz L Appl Biochem Biotechnol; 2011 Jan; 163(2):313-25. PubMed ID: 20652763 [TBL] [Abstract][Full Text] [Related]
7. Conversion of xylan, d-xylose and lignocellulosic biomass into furfural using AlCl3 as catalyst in ionic liquid. Zhang L; Yu H; Wang P; Dong H; Peng X Bioresour Technol; 2013 Feb; 130():110-6. PubMed ID: 23306118 [TBL] [Abstract][Full Text] [Related]
8. Xylans are a valuable alternative resource: production of D-xylose, D-lyxose and furfural under microwave irradiation. Hricovíniová Z Carbohydr Polym; 2013 Nov; 98(2):1416-21. PubMed ID: 24053822 [TBL] [Abstract][Full Text] [Related]
9. Microwave-Assisted Oxalic Acid Pretreatment for the Enhancing of Enzyme Hydrolysis in the Production of Xylose and Arabinose from Bagasse. Yan Y; Zhang C; Lin Q; Wang X; Cheng B; Li H; Ren J Molecules; 2018 Apr; 23(4):. PubMed ID: 29642578 [TBL] [Abstract][Full Text] [Related]
10. Hydrothermal pentose to furfural conversion and simultaneous extraction with SC-CO2--kinetics and application to biomass hydrolysates. Gairola K; Smirnova I Bioresour Technol; 2012 Nov; 123():592-8. PubMed ID: 22947445 [TBL] [Abstract][Full Text] [Related]
11. Catalytic valorization of hardwood for enhanced xylose-hydrolysate recovery and cellulose enzymatic efficiency via synergistic effect of Fe Huang K; Das L; Guo J; Xu Y Biotechnol Biofuels; 2019; 12():248. PubMed ID: 31636707 [TBL] [Abstract][Full Text] [Related]
12. Fermentable sugars production from wheat bran and rye bran: response surface model optimization of dilute sulfuric acid hydrolysis. Demirel F; Germec M; Turhan I Environ Technol; 2022 Oct; 43(24):3779-3800. PubMed ID: 34029158 [No Abstract] [Full Text] [Related]
13. Solid acids as catalysts for the conversion of D-xylose, xylan and lignocellulosics into furfural in ionic liquid. Zhang L; Yu H; Wang P Bioresour Technol; 2013 May; 136():515-21. PubMed ID: 23567725 [TBL] [Abstract][Full Text] [Related]
14. Furfural Production from d-Xylose and Xylan by Using Stable Nafion NR50 and NaCl in a Microwave-Assisted Biphasic Reaction. Le Guenic S; Gergela D; Ceballos C; Delbecq F; Len C Molecules; 2016 Aug; 21(8):. PubMed ID: 27556444 [TBL] [Abstract][Full Text] [Related]
15. The optimization of formic acid hydrolysis of xylose in furfural production. Yang W; Li P; Bo D; Chang H Carbohydr Res; 2012 Aug; 357():53-61. PubMed ID: 22703600 [TBL] [Abstract][Full Text] [Related]
16. Synthesis of sulfonated lignin-derived ordered mesoporous carbon for catalytic production of furfural from xylose. Wang X; Qiu M; Tang Y; Yang J; Shen F; Qi X; Yu Y Int J Biol Macromol; 2021 Sep; 187():232-239. PubMed ID: 34314791 [TBL] [Abstract][Full Text] [Related]
17. Catalytic hydrothermal pretreatment of corncob into xylose and furfural via solid acid catalyst. Li H; Deng A; Ren J; Liu C; Lu Q; Zhong L; Peng F; Sun R Bioresour Technol; 2014 Apr; 158():313-20. PubMed ID: 24632409 [TBL] [Abstract][Full Text] [Related]
18. Microwave-assisted cascade exploitation of giant reed (Arundo donax L.) to xylose and levulinic acid catalysed by ferric chloride. Di Fidio N; Antonetti C; Raspolli Galletti AM Bioresour Technol; 2019 Dec; 293():122050. PubMed ID: 31454732 [TBL] [Abstract][Full Text] [Related]
19. Valorization of Miscanthus × giganteus by γ-Valerolactone/H Ding D; Hu J; Hui L; Liu Z; Shao L Carbohydr Polym; 2021 Oct; 270():118388. PubMed ID: 34364629 [TBL] [Abstract][Full Text] [Related]
20. Optimization of furfural and 5-hydroxymethylfurfural production from wheat straw by a microwave-assisted process. Yemiş O; Mazza G Bioresour Technol; 2012 Apr; 109():215-23. PubMed ID: 22297050 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]