These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

399 related articles for article (PubMed ID: 37549257)

  • 1. The liquid-to-solid transition of FUS is promoted by the condensate surface.
    Shen Y; Chen A; Wang W; Shen Y; Ruggeri FS; Aime S; Wang Z; Qamar S; Espinosa JR; Garaizar A; St George-Hyslop P; Collepardo-Guevara R; Weitz DA; Vigolo D; Knowles TPJ
    Proc Natl Acad Sci U S A; 2023 Aug; 120(33):e2301366120. PubMed ID: 37549257
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Multidimensional Super-Resolution Microscopy Unveils Nanoscale Surface Aggregates in the Aging of FUS Condensates.
    He C; Wu CY; Li W; Xu K
    J Am Chem Soc; 2023 Nov; 145(44):24240-24248. PubMed ID: 37782826
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Reversible Kinetic Trapping of FUS Biomolecular Condensates.
    Chatterjee S; Kan Y; Brzezinski M; Koynov K; Regy RM; Murthy AC; Burke KA; Michels JJ; Mittal J; Fawzi NL; Parekh SH
    Adv Sci (Weinh); 2022 Feb; 9(4):e2104247. PubMed ID: 34862761
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Targeting of biomolecular condensates to the autophagy pathway.
    Ma X; Li P; Ge L
    Trends Cell Biol; 2023 Jun; 33(6):505-516. PubMed ID: 36150962
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Single-Protein Collapse Determines Phase Equilibria of a Biological Condensate.
    Chou HY; Aksimentiev A
    J Phys Chem Lett; 2020 Jun; 11(12):4923-4929. PubMed ID: 32426986
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Active microrheology of protein condensates using colloidal probe-AFM.
    Li X; van der Gucht J; Erni P; de Vries R
    J Colloid Interface Sci; 2023 Feb; 632(Pt B):357-366. PubMed ID: 36436394
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Surface Electrostatics Govern the Emulsion Stability of Biomolecular Condensates.
    Welsh TJ; Krainer G; Espinosa JR; Joseph JA; Sridhar A; Jahnel M; Arter WE; Saar KL; Alberti S; Collepardo-Guevara R; Knowles TPJ
    Nano Lett; 2022 Jan; 22(2):612-621. PubMed ID: 35001622
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Multidimensional super-resolution microscopy unveils nanoscale surface aggregates in the aging of FUS condensates.
    He C; Wu CY; Li W; Xu K
    bioRxiv; 2023 Jul; ():. PubMed ID: 37503034
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Aging can transform single-component protein condensates into multiphase architectures.
    Garaizar A; Espinosa JR; Joseph JA; Krainer G; Shen Y; Knowles TPJ; Collepardo-Guevara R
    Proc Natl Acad Sci U S A; 2022 Jun; 119(26):e2119800119. PubMed ID: 35727989
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Biomolecular condensates undergo a generic shear-mediated liquid-to-solid transition.
    Shen Y; Ruggeri FS; Vigolo D; Kamada A; Qamar S; Levin A; Iserman C; Alberti S; George-Hyslop PS; Knowles TPJ
    Nat Nanotechnol; 2020 Oct; 15(10):841-847. PubMed ID: 32661370
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sodium ion influx regulates liquidity of biomolecular condensates in hyperosmotic stress response.
    Morishita K; Watanabe K; Naguro I; Ichijo H
    Cell Rep; 2023 Apr; 42(4):112315. PubMed ID: 37019112
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The role of biomolecular condensates in protein aggregation.
    Visser BS; Lipiński WP; Spruijt E
    Nat Rev Chem; 2024 Sep; 8(9):686-700. PubMed ID: 39134696
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Time-Dependent Material Properties of Aging Biomolecular Condensates from Different Viscoelasticity Measurements in Molecular Dynamics Simulations.
    Tejedor AR; Collepardo-Guevara R; Ramírez J; Espinosa JR
    J Phys Chem B; 2023 May; 127(20):4441-4459. PubMed ID: 37194953
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A platform to induce and mature biomolecular condensates using chemicals and light.
    Hernandez-Candia CN; Brady BR; Harrison E; Tucker CL
    Nat Chem Biol; 2024 Apr; 20(4):452-462. PubMed ID: 38191942
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biomolecular condensates: new opportunities for drug discovery and RNA therapeutics.
    Conti BA; Oppikofer M
    Trends Pharmacol Sci; 2022 Oct; 43(10):820-837. PubMed ID: 36028355
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Higher-order organization of biomolecular condensates.
    Fare CM; Villani A; Drake LE; Shorter J
    Open Biol; 2021 Jun; 11(6):210137. PubMed ID: 34129784
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Surfactants or scaffolds? RNAs of varying lengths control the thermodynamic stability of condensates differently.
    Sanchez-Burgos I; Herriott L; Collepardo-Guevara R; Espinosa JR
    Biophys J; 2023 Jul; 122(14):2973-2987. PubMed ID: 36883003
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Measurement of Protein and Nucleic Acid Diffusion Coefficients Within Biomolecular Condensates Using In-Droplet Fluorescence Correlation Spectroscopy.
    Alshareedah I; Banerjee PR
    Methods Mol Biol; 2023; 2563():199-213. PubMed ID: 36227474
    [TBL] [Abstract][Full Text] [Related]  

  • 19. In vivo reconstitution finds multivalent RNA-RNA interactions as drivers of mesh-like condensates.
    Ma W; Zhen G; Xie W; Mayr C
    Elife; 2021 Mar; 10():. PubMed ID: 33650968
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mechanism underlying liquid-to-solid phase transition in fused in sarcoma liquid droplets.
    Li S; Yoshizawa T; Shiramasa Y; Kanamaru M; Ide F; Kitamura K; Kashiwagi N; Sasahara N; Kitazawa S; Kitahara R
    Phys Chem Chem Phys; 2022 Aug; 24(32):19346-19353. PubMed ID: 35943083
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 20.