These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

399 related articles for article (PubMed ID: 37549257)

  • 41. Condensate interfaces can accelerate protein aggregation.
    Choi CH; Lee DSW; Sanders DW; Brangwynne CP
    Biophys J; 2024 Jun; 123(11):1404-1413. PubMed ID: 37837191
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Biomolecular Condensates Can Enhance Pathological RNA Clustering.
    Mahendran TS; Wadsworth GM; Singh A; Banerjee PR
    bioRxiv; 2024 Jun; ():. PubMed ID: 38915678
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Biomolecular condensates can enhance pathological RNA clustering.
    Banerjee P; Mahendran TS; Wadsworth G; Singh A
    Res Sq; 2024 Jul; ():. PubMed ID: 39070659
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Sequence-dependent material properties of biomolecular condensates and their relation to dilute phase conformations.
    Sundaravadivelu Devarajan D; Wang J; Szała-Mendyk B; Rekhi S; Nikoubashman A; Kim YC; Mittal J
    Nat Commun; 2024 Mar; 15(1):1912. PubMed ID: 38429263
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Thermodynamic forces from protein and water govern condensate formation of an intrinsically disordered protein domain.
    Mukherjee S; Schäfer LV
    Nat Commun; 2023 Sep; 14(1):5892. PubMed ID: 37735186
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Determining the Physico-Chemical Composition of Biomolecular Condensates from Spatially-Resolved NMR.
    Pantoja CF; Ibáñez de Opakua A; Cima-Omori MS; Zweckstetter M
    Angew Chem Int Ed Engl; 2023 Apr; 62(17):e202218078. PubMed ID: 36847235
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Role of aberrant phase separation in pathological protein aggregation.
    Chakraborty P; Zweckstetter M
    Curr Opin Struct Biol; 2023 Oct; 82():102678. PubMed ID: 37604044
    [TBL] [Abstract][Full Text] [Related]  

  • 48. RNA and condensates: Disease implications and therapeutic opportunities.
    Han TW; Portz B; Young RA; Boija A; Klein IA
    Cell Chem Biol; 2024 Sep; 31(9):1593-1609. PubMed ID: 39303698
    [TBL] [Abstract][Full Text] [Related]  

  • 49. The exchange dynamics of biomolecular condensates.
    Zhang Y; Pyo AGT; Kliegman R; Jiang Y; Brangwynne CP; Stone HA; Wingreen NS
    Elife; 2024 Sep; 12():. PubMed ID: 39320949
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Glycine-Rich Peptides from FUS Have an Intrinsic Ability to Self-Assemble into Fibers and Networked Fibrils.
    Kar M; Posey AE; Dar F; Hyman AA; Pappu RV
    Biochemistry; 2021 Nov; 60(43):3213-3222. PubMed ID: 34648275
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Fluorescence Lifetime Imaging Microscopy of Biomolecular Condensates.
    Quan MD; Liao SJ; Ferreon JC; Ferreon ACM
    Methods Mol Biol; 2023; 2563():135-148. PubMed ID: 36227471
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Interface of biomolecular condensates modulates redox reactions.
    Dai Y; Chamberlayne CF; Messina MS; Chang CJ; Zare RN; You L; Chilkoti A
    Chem; 2023 Jun; 9(6):1594-1609. PubMed ID: 37546704
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Biomolecular Condensates in Contact with Membranes.
    Mangiarotti A; Dimova R
    Annu Rev Biophys; 2024 Jul; 53(1):319-341. PubMed ID: 38360555
    [TBL] [Abstract][Full Text] [Related]  

  • 54. What are the distinguishing features and size requirements of biomolecular condensates and their implications for RNA-containing condensates?
    Forman-Kay JD; Ditlev JA; Nosella ML; Lee HO
    RNA; 2022 Jan; 28(1):36-47. PubMed ID: 34772786
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Oral Antiviral Defense: Saliva- and Beverage-like Hypotonicity Dynamically Regulate Formation of Membraneless Biomolecular Condensates of Antiviral Human MxA in Oral Epithelial Cells.
    Sehgal PB; Yuan H; Centone A; DiSenso-Browne SV
    Cells; 2024 Mar; 13(7):. PubMed ID: 38607029
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Capillary forces generated by biomolecular condensates.
    Gouveia B; Kim Y; Shaevitz JW; Petry S; Stone HA; Brangwynne CP
    Nature; 2022 Sep; 609(7926):255-264. PubMed ID: 36071192
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Surface tension and viscosity of protein condensates quantified by micropipette aspiration.
    Wang H; Kelley FM; Milovanovic D; Schuster BS; Shi Z
    Biophys Rep (N Y); 2021 Sep; 1(1):. PubMed ID: 36247368
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Determining Thermodynamic and Material Properties of Biomolecular Condensates by Confocal Microscopy and Optical Tweezers.
    Ghosh A; Kota D; Zhou HX
    Methods Mol Biol; 2023; 2563():237-260. PubMed ID: 36227477
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Unravelling the microscopic characteristics of intrinsically disordered proteins upon liquid-liquid phase separation.
    Wu S; Wen J; Perrett S
    Essays Biochem; 2022 Dec; 66(7):891-900. PubMed ID: 36524527
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Nuclear Import Receptor Inhibits Phase Separation of FUS through Binding to Multiple Sites.
    Yoshizawa T; Ali R; Jiou J; Fung HYJ; Burke KA; Kim SJ; Lin Y; Peeples WB; Saltzberg D; Soniat M; Baumhardt JM; Oldenbourg R; Sali A; Fawzi NL; Rosen MK; Chook YM
    Cell; 2018 Apr; 173(3):693-705.e22. PubMed ID: 29677513
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 20.