These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

183 related articles for article (PubMed ID: 37549265)

  • 21. Climate differently influences the genomic patterns of two sympatric marine fish species.
    Boulanger E; Benestan L; Guerin PE; Dalongeville A; Mouillot D; Manel S
    J Anim Ecol; 2022 Jun; 91(6):1180-1195. PubMed ID: 34716929
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The genomic footprint of climate adaptation in Chironomus riparius.
    Waldvogel AM; Wieser A; Schell T; Patel S; Schmidt H; Hankeln T; Feldmeyer B; Pfenninger M
    Mol Ecol; 2018 Mar; 27(6):1439-1456. PubMed ID: 29473242
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Genomic signatures of seed mass adaptation to global precipitation gradients in sorghum.
    Wang J; Hu Z; Upadhyaya HD; Morris GP
    Heredity (Edinb); 2020 Jan; 124(1):108-121. PubMed ID: 31316156
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Considering adaptive genetic variation in climate change vulnerability assessment reduces species range loss projections.
    Razgour O; Forester B; Taggart JB; Bekaert M; Juste J; Ibáñez C; Puechmaille SJ; Novella-Fernandez R; Alberdi A; Manel S
    Proc Natl Acad Sci U S A; 2019 May; 116(21):10418-10423. PubMed ID: 31061126
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Genomic reaction norms inform predictions of plastic and adaptive responses to climate change.
    Oomen RA; Hutchings JA
    J Anim Ecol; 2022 Jun; 91(6):1073-1087. PubMed ID: 35445402
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Distinct interspecific and intraspecific vulnerability of coastal species to global change.
    Nielsen ES; Henriques R; Beger M; von der Heyden S
    Glob Chang Biol; 2021 Aug; 27(15):3415-3431. PubMed ID: 33904200
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Ecological genomics of local adaptation.
    Savolainen O; Lascoux M; Merilä J
    Nat Rev Genet; 2013 Nov; 14(11):807-20. PubMed ID: 24136507
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Ecological genomics meets community-level modelling of biodiversity: mapping the genomic landscape of current and future environmental adaptation.
    Fitzpatrick MC; Keller SR
    Ecol Lett; 2015 Jan; 18(1):1-16. PubMed ID: 25270536
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Genomic analyses provide insights into peach local adaptation and responses to climate change.
    Li Y; Cao K; Li N; Zhu G; Fang W; Chen C; Wang X; Guo J; Wang Q; Ding T; Wang J; Guan L; Wang J; Liu K; Guo W; Arús P; Huang S; Fei Z; Wang L
    Genome Res; 2021 Apr; 31(4):592-606. PubMed ID: 33687945
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Two are better than one: combining landscape genomics and common gardens for detecting local adaptation in forest trees.
    Lepais O; Bacles CF
    Mol Ecol; 2014 Oct; 23(19):4671-3. PubMed ID: 25263401
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Landscape genomics and a common garden trial reveal adaptive differentiation to temperature across Europe in the tree species Alnus glutinosa.
    De Kort H; Vandepitte K; Bruun HH; Closset-Kopp D; Honnay O; Mergeay J
    Mol Ecol; 2014 Oct; 23(19):4709-21. PubMed ID: 24860941
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Harnessing the power of multi-omics data for predicting climate change response.
    Layton KKS; Bradbury IR
    J Anim Ecol; 2022 Jun; 91(6):1064-1072. PubMed ID: 34679193
    [TBL] [Abstract][Full Text] [Related]  

  • 33. From common gardens to candidate genes: exploring local adaptation to climate in red spruce.
    Capblancq T; Lachmuth S; Fitzpatrick MC; Keller SR
    New Phytol; 2023 Mar; 237(5):1590-1605. PubMed ID: 36068997
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Signatures of natural selection in a foundation tree along Mediterranean climatic gradients.
    Filipe JC; Rymer PD; Byrne M; Hardy G; Mazanec R; Ahrens CW
    Mol Ecol; 2022 Mar; 31(6):1735-1752. PubMed ID: 35038378
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Genomics empowering conservation action and improvement of celery in the face of climate change.
    Singh S; Singh R; Priyadarsini S; Ola AL
    Planta; 2024 Jan; 259(2):42. PubMed ID: 38270699
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Standing genomic variation within coding and regulatory regions contributes to the adaptive capacity to climate in a foundation tree species.
    Ahrens CW; Byrne M; Rymer PD
    Mol Ecol; 2019 May; 28(10):2502-2516. PubMed ID: 30950536
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Genomic vulnerability of a dominant seaweed points to future-proofing pathways for Australia's underwater forests.
    Wood G; Marzinelli EM; Campbell AH; Steinberg PD; Vergés A; Coleman MA
    Glob Chang Biol; 2021 May; 27(10):2200-2212. PubMed ID: 33511779
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Contrasting patterns of local adaptation along climatic gradients between a sympatric parasitic and autotrophic tree species.
    Walters SJ; Robinson TP; Byrne M; Wardell-Johnson GW; Nevill P
    Mol Ecol; 2020 Aug; 29(16):3022-3037. PubMed ID: 32621768
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Genomic evidence of introgression and adaptation in a model subtropical tree species, Eucalyptus grandis.
    Mostert-O'Neill MM; Reynolds SM; Acosta JJ; Lee DJ; Borevitz JO; Myburg AA
    Mol Ecol; 2021 Feb; 30(3):625-638. PubMed ID: 32881106
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Climate-related genetic variation in a threatened tree species, Pinus albicaulis.
    Warwell MV; Shaw RG
    Am J Bot; 2017 Aug; 104(8):1205-1218. PubMed ID: 29756223
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.