These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 37549275)

  • 1. Multitasking via baseline control in recurrent neural networks.
    Ogawa S; Fumarola F; Mazzucato L
    Proc Natl Acad Sci U S A; 2023 Aug; 120(33):e2304394120. PubMed ID: 37549275
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The deep arbitrary polynomial chaos neural network or how Deep Artificial Neural Networks could benefit from data-driven homogeneous chaos theory.
    Oladyshkin S; Praditia T; Kroeker I; Mohammadi F; Nowak W; Otte S
    Neural Netw; 2023 Sep; 166():85-104. PubMed ID: 37480771
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Beneficial Perturbation Network for Designing General Adaptive Artificial Intelligence Systems.
    Wen S; Rios A; Ge Y; Itti L
    IEEE Trans Neural Netw Learn Syst; 2022 Aug; 33(8):3778-3791. PubMed ID: 33596177
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Constrained chaos in three-module neural network enables to execute multiple tasks simultaneously.
    Nara S; Soma KI; Yamaguti Y; Tsuda I
    Neurosci Res; 2020 Jul; 156():217-224. PubMed ID: 31891741
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Delay-based reservoir computing: noise effects in a combined analog and digital implementation.
    Soriano MC; Ortín S; Keuninckx L; Appeltant L; Danckaert J; Pesquera L; van der Sande G
    IEEE Trans Neural Netw Learn Syst; 2015 Feb; 26(2):388-93. PubMed ID: 25608295
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Flexible multitask computation in recurrent networks utilizes shared dynamical motifs.
    Driscoll LN; Shenoy K; Sussillo D
    Nat Neurosci; 2024 Jul; 27(7):1349-1363. PubMed ID: 38982201
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Computational capabilities of random automata networks for reservoir computing.
    Snyder D; Goudarzi A; Teuscher C
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Apr; 87(4):042808. PubMed ID: 23679474
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Driving reservoir models with oscillations: a solution to the extreme structural sensitivity of chaotic networks.
    Vincent-Lamarre P; Lajoie G; Thivierge JP
    J Comput Neurosci; 2016 Dec; 41(3):305-322. PubMed ID: 27585661
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Real-time computation at the edge of chaos in recurrent neural networks.
    Bertschinger N; Natschläger T
    Neural Comput; 2004 Jul; 16(7):1413-36. PubMed ID: 15165396
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Learn to synchronize, synchronize to learn.
    Verzelli P; Alippi C; Livi L
    Chaos; 2021 Aug; 31(8):083119. PubMed ID: 34470256
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Coherent chaos in a recurrent neural network with structured connectivity.
    Landau ID; Sompolinsky H
    PLoS Comput Biol; 2018 Dec; 14(12):e1006309. PubMed ID: 30543634
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Recent advances in physical reservoir computing: A review.
    Tanaka G; Yamane T; Héroux JB; Nakane R; Kanazawa N; Takeda S; Numata H; Nakano D; Hirose A
    Neural Netw; 2019 Jul; 115():100-123. PubMed ID: 30981085
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A comprehensive review and analysis of supervised-learning and soft computing techniques for stress diagnosis in humans.
    Sharma S; Singh G; Sharma M
    Comput Biol Med; 2021 Jul; 134():104450. PubMed ID: 33989896
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Input-to-State Representation in Linear Reservoirs Dynamics.
    Verzelli P; Alippi C; Livi L; Tino P
    IEEE Trans Neural Netw Learn Syst; 2022 Sep; 33(9):4598-4609. PubMed ID: 33651697
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of recurrent infomax on the information processing capability of input-driven recurrent neural networks.
    Tanaka T; Nakajima K; Aoyagi T
    Neurosci Res; 2020 Jul; 156():225-233. PubMed ID: 32068068
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Reservoir Computing Properties of Neural Dynamics in Prefrontal Cortex.
    Enel P; Procyk E; Quilodran R; Dominey PF
    PLoS Comput Biol; 2016 Jun; 12(6):e1004967. PubMed ID: 27286251
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Minimum complexity echo state network.
    Rodan A; Tino P
    IEEE Trans Neural Netw; 2011 Jan; 22(1):131-44. PubMed ID: 21075721
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Connectivity, dynamics, and memory in reservoir computing with binary and analog neurons.
    Büsing L; Schrauwen B; Legenstein R
    Neural Comput; 2010 May; 22(5):1272-311. PubMed ID: 20028227
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Step-like dependence of memory function on pulse width in spintronics reservoir computing.
    Yamaguchi T; Akashi N; Nakajima K; Kubota H; Tsunegi S; Taniguchi T
    Sci Rep; 2020 Nov; 10(1):19536. PubMed ID: 33177539
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Key role of neuronal diversity in structured reservoir computing.
    Thivierge JP; Giraud E; Lynn M; Théberge Charbonneau A
    Chaos; 2022 Nov; 32(11):113130. PubMed ID: 36456321
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.