These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
140 related articles for article (PubMed ID: 37549338)
1. Keep in touch: the soil-root hydraulic continuum and its role in drought resistance in crops. Affortit P; Ahmed MA; Grondin A; Delzon S; Carminati A; Laplaze L J Exp Bot; 2024 Jan; 75(2):584-593. PubMed ID: 37549338 [TBL] [Abstract][Full Text] [Related]
2. The role of arbuscular mycorrhizal symbiosis in improving plant water status under drought. Abdalla M; Bitterlich M; Jansa J; Püschel D; Ahmed MA J Exp Bot; 2023 Sep; 74(16):4808-4824. PubMed ID: 37409696 [TBL] [Abstract][Full Text] [Related]
3. Plant roots redesign the rhizosphere to alter the three-dimensional physical architecture and water dynamics. Rabbi SMF; Tighe MK; Flavel RJ; Kaiser BN; Guppy CN; Zhang X; Young IM New Phytol; 2018 Jul; 219(2):542-550. PubMed ID: 29774952 [TBL] [Abstract][Full Text] [Related]
4. Rhizosheath formation and involvement in foxtail millet (Setaria italica) root growth under drought stress. Liu TY; Ye N; Song T; Cao Y; Gao B; Zhang D; Zhu F; Chen M; Zhang Y; Xu W; Zhang J J Integr Plant Biol; 2019 Apr; 61(4):449-462. PubMed ID: 30183129 [TBL] [Abstract][Full Text] [Related]
5. Arbuscular Mycorrhiza Symbiosis Enhances Water Status and Soil-Plant Hydraulic Conductance Under Drought. Abdalla M; Ahmed MA Front Plant Sci; 2021; 12():722954. PubMed ID: 34721455 [TBL] [Abstract][Full Text] [Related]
6. Comparative metabolite profiling of two switchgrass ecotypes reveals differences in drought stress responses and rhizosheath weight. Liu TY; Chen MX; Zhang Y; Zhu FY; Liu YG; Tian Y; Fernie AR; Ye N; Zhang J Planta; 2019 Oct; 250(4):1355-1369. PubMed ID: 31278465 [TBL] [Abstract][Full Text] [Related]
7. Rhizosheath drought responsiveness is variety-specific and a key component of belowground plant adaptation. Steiner FA; Wild AJ; Tyborski N; Tung SY; Koehler T; Buegger F; Carminati A; Eder B; Groth J; Hesse BD; Pausch J; Lüders T; Vahl WK; Wolfrum S; Mueller CW; Vidal A New Phytol; 2024 Apr; 242(2):479-492. PubMed ID: 38418430 [TBL] [Abstract][Full Text] [Related]
8. Soil-root interface hydraulic conductance determines responses of photosynthesis to drought in rice and wheat. Yang Y; Ma X; Yan L; Li Y; Wei S; Teng Z; Zhang H; Tang W; Peng S; Li Y Plant Physiol; 2023 Dec; 194(1):376-390. PubMed ID: 37706538 [TBL] [Abstract][Full Text] [Related]
9. Differential Responses of Arbuscular Mycorrhizal Fungal Communities to Long-Term Fertilization in the Wheat Rhizosphere and Root Endosphere. Ma Y; Zhang H; Wang D; Guo X; Yang T; Xiang X; Walder F; Chu H Appl Environ Microbiol; 2021 Aug; 87(17):e0034921. PubMed ID: 34160265 [TBL] [Abstract][Full Text] [Related]
10. Rhizosheath microbes induce root immune response under soil drying. Wang J; Ding Y; Cao Y; Xu W; Zhang Y Plant Signal Behav; 2021 Aug; 16(8):1920752. PubMed ID: 33906570 [TBL] [Abstract][Full Text] [Related]
11. Plasticity of rhizosphere hydraulic properties as a key for efficient utilization of scarce resources. Carminati A; Vetterlein D Ann Bot; 2013 Jul; 112(2):277-90. PubMed ID: 23235697 [TBL] [Abstract][Full Text] [Related]
12. Arbuscular Mycorrhiza Alleviates Restrictions to Substrate Water Flow and Delays Transpiration Limitation to Stronger Drought in Tomato. Bitterlich M; Sandmann M; Graefe J Front Plant Sci; 2018; 9():154. PubMed ID: 29503655 [TBL] [Abstract][Full Text] [Related]
13. Unraveling root and rhizosphere traits in temperate maize landraces and modern cultivars: Implications for soil resource acquisition and drought adaptation. Wild AJ; Steiner FA; Kiene M; Tyborski N; Tung SY; Koehler T; Carminati A; Eder B; Groth J; Vahl WK; Wolfrum S; Lueders T; Laforsch C; Mueller CW; Vidal A; Pausch J Plant Cell Environ; 2024 Jul; 47(7):2526-2541. PubMed ID: 38515431 [TBL] [Abstract][Full Text] [Related]
14. Growth and Photosynthetic Activity of Selected Spelt Varieties ( Ratajczak K; Sulewska H; Błaszczyk L; Basińska-Barczak A; Mikołajczak K; Salamon S; Szymańska G; Dryjański L Int J Mol Sci; 2020 Oct; 21(21):. PubMed ID: 33121138 [TBL] [Abstract][Full Text] [Related]
15. Exopolysaccharides producing rhizobacteria and their role in plant growth and drought tolerance. Naseem H; Ahsan M; Shahid MA; Khan N J Basic Microbiol; 2018 Dec; 58(12):1009-1022. PubMed ID: 30183106 [TBL] [Abstract][Full Text] [Related]
16. Root hydraulic phenotypes impacting water uptake in drying soils. Cai G; Ahmed MA; Abdalla M; Carminati A Plant Cell Environ; 2022 Mar; 45(3):650-663. PubMed ID: 35037263 [TBL] [Abstract][Full Text] [Related]
17. Enhancement of drought stress tolerance in crops by plant growth promoting rhizobacteria. Vurukonda SS; Vardharajula S; Shrivastava M; SkZ A Microbiol Res; 2016 Mar; 184():13-24. PubMed ID: 26856449 [TBL] [Abstract][Full Text] [Related]
18. Above-and below-ground feedback loop of maize is jointly enhanced by plant growth-promoting rhizobacteria and arbuscular mycorrhizal fungi in drier soil. Khan W; Zhu Y; Khan A; Zhao L; Yang YM; Wang N; Hao M; Ma Y; Nepal J; Ullah F; Rehman MMU; Abrar M; Xiong YC Sci Total Environ; 2024 Mar; 917():170417. PubMed ID: 38280611 [TBL] [Abstract][Full Text] [Related]
19. The spatial distribution of rhizosphere microbial activities under drought: water availability is more important than root-hair-controlled exudation. Zhang X; Bilyera N; Fan L; Duddek P; Ahmed MA; Carminati A; Kaestner A; Dippold MA; Spielvogel S; Razavi BS New Phytol; 2023 Feb; 237(3):780-792. PubMed ID: 35986650 [TBL] [Abstract][Full Text] [Related]
20. The role of drought response genes and plant growth promoting bacteria on plant growth promotion under sustainable agriculture: A review. Kumar A; Naroju SP; Kumari N; Arsey S; Kumar D; Gubre DF; Roychowdhury A; Tyagi S; Saini P Microbiol Res; 2024 Sep; 286():127827. PubMed ID: 39002396 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]