BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 37549528)

  • 1. Membrane bioreactor assisted volatile fatty acids production from agro-industrial residues for ruminant feed application.
    Parchami M; Uwineza C; Ibeabuchi OH; Rustas BO; Taherzadeh MJ; Mahboubi A
    Waste Manag; 2023 Oct; 170():62-74. PubMed ID: 37549528
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Membrane bioreactor-assisted volatile fatty acids production and in situ recovery from cow manure.
    Jomnonkhaow U; Uwineza C; Mahboubi A; Wainaina S; Reungsang A; Taherzadeh MJ
    Bioresour Technol; 2021 Feb; 321():124456. PubMed ID: 33276207
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Application of Immersed Membrane Bioreactor for Semi-Continuous Production of Polyhydroxyalkanoates from Organic Waste-Based Volatile Fatty Acids.
    Vu DH; Mahboubi A; Root A; Heinmaa I; Taherzadeh MJ; Åkesson D
    Membranes (Basel); 2023 May; 13(6):. PubMed ID: 37367773
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Food waste-derived volatile fatty acids platform using an immersed membrane bioreactor.
    Wainaina S; Parchami M; Mahboubi A; Horváth IS; Taherzadeh MJ
    Bioresour Technol; 2019 Feb; 274():329-334. PubMed ID: 30529480
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Double-stage membrane-assisted anaerobic digestion process intensification for production and recovery of volatile fatty acids from food waste.
    Pervez MN; Bilgiç B; Mahboubi A; Uwineza C; Zarra T; Belgiorno V; Naddeo V; Taherzadeh MJ
    Sci Total Environ; 2022 Jun; 825():154084. PubMed ID: 35218831
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evaluation of in vitro digestibility of Aspergillus oryzae fungal biomass grown on organic residue derived-VFAs as a promising ruminant feed supplement.
    Uwineza C; Bouzarjomehr M; Parchami M; Sar T; Taherzadeh MJ; Mahboubi A
    J Anim Sci Biotechnol; 2023 Oct; 14(1):120. PubMed ID: 37777808
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Volatile Fatty Acids (VFA) Production and Recovery from Chicken Manure Using a High-Solid Anaerobic Membrane Bioreactor (AnMBR).
    Yin DM; Uwineza C; Sapmaz T; Mahboubi A; De Wever H; Qiao W; Taherzadeh MJ
    Membranes (Basel); 2022 Nov; 12(11):. PubMed ID: 36422125
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Factors influencing pressure-driven membrane-assisted volatile fatty acids recovery and purification-A review.
    Pervez MN; Mahboubi A; Uwineza C; Zarra T; Belgiorno V; Naddeo V; Taherzadeh MJ
    Sci Total Environ; 2022 Apr; 817():152993. PubMed ID: 35026250
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Acidogenic properties of carbohydrate-rich wasted potato and microbial community analysis: Effect of pH.
    Li Y; Zhang X; Xu H; Mu H; Hua D; Jin F; Meng G
    J Biosci Bioeng; 2019 Jul; 128(1):50-55. PubMed ID: 30648546
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Performance of volatile fatty acids production from food waste at the presence of alkyl ethoxy polyglycosides and sodium dodecyl sulfate.
    Quan C; Chen C; Li X; Gao N
    Chemosphere; 2023 Dec; 343():140215. PubMed ID: 37734502
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sieving of municipal wastewater and recovery of bio-based volatile fatty acids at pilot scale.
    Da Ros C; Conca V; Eusebi AL; Frison N; Fatone F
    Water Res; 2020 May; 174():115633. PubMed ID: 32109752
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Upflow anaerobic sludge blanket reactor--a review.
    Bal AS; Dhagat NN
    Indian J Environ Health; 2001 Apr; 43(2):1-82. PubMed ID: 12397675
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The effect of mono- and multiple fermentation parameters on volatile fatty acids (VFAs) production from chicken manure via anaerobic digestion.
    Yin DM; Mahboubi A; Wainaina S; Qiao W; Taherzadeh MJ
    Bioresour Technol; 2021 Jun; 330():124992. PubMed ID: 33744736
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Life cycle assessment of volatile fatty acids production from protein- and carbohydrate-rich organic wastes.
    Gálvez-Martos JL; Greses S; Magdalena JA; Iribarren D; Tomás-Pejó E; González-Fernández C
    Bioresour Technol; 2021 Feb; 321():124528. PubMed ID: 33333483
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A viable approach for commercial VFAs production from sludge: Liquid fermentation in anaerobic dynamic membrane reactor.
    Liu H; Wang L; Zhang X; Fu B; Liu H; Li Y; Lu X
    J Hazard Mater; 2019 Mar; 365():912-920. PubMed ID: 30497045
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Impact of Organic Loading Rate in Volatile Fatty Acids Production and Population Dynamics Using Microalgae Biomass as Substrate.
    Magdalena JA; Greses S; González-Fernández C
    Sci Rep; 2019 Dec; 9(1):18374. PubMed ID: 31804573
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biohydrogen production from dairy manures with acidification pretreatment by anaerobic fermentation.
    Xing Y; Li Z; Fan Y; Hou H
    Environ Sci Pollut Res Int; 2010 Feb; 17(2):392-9. PubMed ID: 19499259
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Valorisation of industrial hemp (Cannabis sativa L.) biomass residues through acidogenic fermentation and co-fermentation for volatile fatty acids production.
    Moscariello C; Matassa S; Pirozzi F; Esposito G; Papirio S
    Bioresour Technol; 2022 Jul; 355():127289. PubMed ID: 35545211
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Acidogenic fermentation of food waste for production of volatile fatty acids: Bacterial community analysis and semi-continuous operation.
    Zhang L; Loh KC; Dai Y; Tong YW
    Waste Manag; 2020 May; 109():75-84. PubMed ID: 32388405
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Acidogenic fermentation of iron-enhanced primary sedimentation sludge under different pH conditions for production of volatile fatty acids.
    Lin L; Li XY
    Chemosphere; 2018 Mar; 194():692-700. PubMed ID: 29245135
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.