These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
141 related articles for article (PubMed ID: 37549564)
1. Assessing mammal fence crossing and local fence management in relation to classical swine fever spread in Japan. Suzuki T; Ikeda T; Higashide D; Nose T; Shichijo T; Suzuki M Prev Vet Med; 2023 Sep; 218():105980. PubMed ID: 37549564 [TBL] [Abstract][Full Text] [Related]
2. Quantification of wildlife visits to pig farms via camera traps in Japan. Shichijo T; Ikeda T; Higashide D; Omori A; Suzuki T; Suzuki M Prev Vet Med; 2024 Nov; 232():106318. PubMed ID: 39241525 [TBL] [Abstract][Full Text] [Related]
3. Permeability of artificial barriers (fences) for wild boar (Sus scrofa) in Mediterranean mixed landscapes. Laguna E; Barasona JA; Carpio AJ; Vicente J; Acevedo P Pest Manag Sci; 2022 Jun; 78(6):2277-2286. PubMed ID: 35229454 [TBL] [Abstract][Full Text] [Related]
4. Monitoring relative abundance index and age ratios of wild boar (Sus scrofa) in small scale population in Gifu prefecture, Japan during classical swine fever outbreak. Ikeda T; Asano M; Kuninaga N; Suzuki M J Vet Med Sci; 2020 Jun; 82(6):861-865. PubMed ID: 32435014 [TBL] [Abstract][Full Text] [Related]
5. The potential negative impacts of the classical swine fever virus on wild boar population in Gifu prefecture, Japan. Ikeda T; Asano M; Suzuki M J Vet Med Sci; 2021 May; 83(5):846-849. PubMed ID: 33775990 [TBL] [Abstract][Full Text] [Related]
6. Analysis of effective spatial range of oral vaccination against classical swine fever for wild boar. Hayama Y; Sawai K; Murato Y; Yamaguchi E; Kondo S; Yamamoto T Prev Vet Med; 2023 Dec; 221():106080. PubMed ID: 38029645 [TBL] [Abstract][Full Text] [Related]
7. Epidemiological analysis of classical swine fever in wild boars in Japan. Shimizu Y; Hayama Y; Murato Y; Sawai K; Yamaguchi E; Yamamoto T BMC Vet Res; 2021 May; 17(1):188. PubMed ID: 33975588 [TBL] [Abstract][Full Text] [Related]
8. Pig farm vaccination against classical swine fever reduces the risk of transmission from wild boar. Hayama Y; Sawai K; Yoshinori M; Yamaguchi E; Shimizu Y; Yamamoto T Prev Vet Med; 2022 Jan; 198():105554. PubMed ID: 34872007 [TBL] [Abstract][Full Text] [Related]
9. Assessing the geographic range of classical swine fever vaccinations by spatiotemporal modelling in Japan. Yang Y; Nishiura H Transbound Emerg Dis; 2022 Jul; 69(4):1880-1889. PubMed ID: 34042305 [TBL] [Abstract][Full Text] [Related]
10. Animal use of fence crossings in southwestern rangelands. Zoromski LD; DeYoung RW; Goolsby JA; Foley AM; Ortega-Santos JA; Hewitt DG; Campbell TA Ecol Evol; 2022 Oct; 12(10):e9376. PubMed ID: 36203632 [TBL] [Abstract][Full Text] [Related]
11. Efficient oral vaccination program against classical swine fever in wild boar population. Ikeda T; Higashide D; Suzuki T; Asano M Prev Vet Med; 2022 Aug; 205():105700. PubMed ID: 35772241 [TBL] [Abstract][Full Text] [Related]
12. Efficacy of Oral Vaccine against Classical Swine Fever in Wild Boar and Estimation of the Disease Dynamics in the Quantitative Approach. Bazarragchaa E; Isoda N; Kim T; Tetsuo M; Ito S; Matsuno K; Sakoda Y Viruses; 2021 Feb; 13(2):. PubMed ID: 33672749 [TBL] [Abstract][Full Text] [Related]
13. Estimation of infection risk on pig farms in infected wild boar areas-Epidemiological analysis for the reemergence of classical swine fever in Japan in 2018. Hayama Y; Shimizu Y; Murato Y; Sawai K; Yamamoto T Prev Vet Med; 2020 Feb; 175():104873. PubMed ID: 31896501 [TBL] [Abstract][Full Text] [Related]
14. Effectiveness of cattle operated bump gates and exclusion fences in preventing ungulate multi-host sanitary interaction. Barasona JA; VerCauteren KC; Saklou N; Gortazar C; Vicente J Prev Vet Med; 2013 Aug; 111(1-2):42-50. PubMed ID: 23602337 [TBL] [Abstract][Full Text] [Related]
15. A questionnaire-based evaluation of the veterinary cordon fence separating wildlife and livestock along the boundary of the Kruger National Park, South Africa. Jori F; Brahmbhatt D; Fosgate GT; Thompson PN; Budke C; Ward MP; Ferguson K; Gummow B Prev Vet Med; 2011 Jul; 100(3-4):210-20. PubMed ID: 21536336 [TBL] [Abstract][Full Text] [Related]
16. Risk assessment of infection with severe fever with thrombocytopenia syndrome virus based on a 10-year serosurveillance in Yamaguchi Prefecture. Tatemoto K; Virhuez Mendoza M; Ishijima K; Kuroda Y; Inoue Y; Taira M; Kuwata R; Takano A; Morikawa S; Shimoda H J Vet Med Sci; 2022 Aug; 84(8):1142-1145. PubMed ID: 35793949 [TBL] [Abstract][Full Text] [Related]
17. Exploring the internal and external wildlife gradients created by conservation fences. Moseby KE; McGregor H; Hill BM; Read JL Conserv Biol; 2020 Feb; 34(1):220-231. PubMed ID: 31310356 [TBL] [Abstract][Full Text] [Related]
18. Application of machine learning with large-scale data for an effective vaccination against classical swine fever for wild boar in Japan. Ito S; Aguilar-Vega C; Bosch J; Isoda N; Sánchez-Vizcaíno JM Sci Rep; 2024 Mar; 14(1):5312. PubMed ID: 38438432 [TBL] [Abstract][Full Text] [Related]
19. Seroprevalence of Toxoplasma gondii in wild boars (Sus scrofa leucomystax) and wild sika deer (Cervus nippon) in Gunma Prefecture, Japan. Matsumoto J; Kako Y; Morita Y; Kabeya H; Sakano C; Nagai A; Maruyama S; Nogami S Parasitol Int; 2011 Sep; 60(3):331-2. PubMed ID: 21640197 [TBL] [Abstract][Full Text] [Related]
20. Odor Fences Have No Effect on Wild Boar Movement and Home Range Size. Faltusová M; Ježek M; Ševčík R; Silovský V; Cukor J Animals (Basel); 2024 Sep; 14(17):. PubMed ID: 39272341 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]