These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
207 related articles for article (PubMed ID: 37549725)
1. The key roles of reactive oxygen species in microglial inflammatory activation: Regulation by endogenous antioxidant system and exogenous sulfur-containing compounds. Fan H; Bai Q; Yang Y; Shi X; Du G; Yan J; Shi J; Wang D Eur J Pharmacol; 2023 Oct; 956():175966. PubMed ID: 37549725 [TBL] [Abstract][Full Text] [Related]
2. Role of Zerumbone, a Phytochemical Sesquiterpenoid from Yeh WL; Huang BR; Chen GW; Charoensaensuk V; Tsai CF; Yang LY; Lu DY; Chen MK; Lin C Nutrients; 2022 Dec; 14(24):. PubMed ID: 36558562 [TBL] [Abstract][Full Text] [Related]
3. Regulatory Effects of Quercetin on M1/M2 Macrophage Polarization and Oxidative/Antioxidative Balance. Tsai CF; Chen GW; Chen YC; Shen CK; Lu DY; Yang LY; Chen JH; Yeh WL Nutrients; 2021 Dec; 14(1):. PubMed ID: 35010945 [TBL] [Abstract][Full Text] [Related]
4. Methionine sulfoxide reductase A negatively controls microglia-mediated neuroinflammation via inhibiting ROS/MAPKs/NF-κB signaling pathways through a catalytic antioxidant function. Fan H; Wu PF; Zhang L; Hu ZL; Wang W; Guan XL; Luo H; Ni M; Yang JW; Li MX; Chen JG; Wang F Antioxid Redox Signal; 2015 Apr; 22(10):832-47. PubMed ID: 25602783 [TBL] [Abstract][Full Text] [Related]
5. The Antioxidant Effects of Thymoquinone in Activated BV-2 Murine Microglial Cells. Cobourne-Duval MK; Taka E; Mendonca P; Bauer D; Soliman KF Neurochem Res; 2016 Dec; 41(12):3227-3238. PubMed ID: 27585756 [TBL] [Abstract][Full Text] [Related]
6. Sirtuin 3 regulates Foxo3a-mediated antioxidant pathway in microglia. Rangarajan P; Karthikeyan A; Lu J; Ling EA; Dheen ST Neuroscience; 2015 Dec; 311():398-414. PubMed ID: 26523980 [TBL] [Abstract][Full Text] [Related]
7. l-Methionine activates Nrf2-ARE pathway to induce endogenous antioxidant activity for depressing ROS-derived oxidative stress in growing rats. Wang Z; Liang M; Li H; Cai L; He H; Wu Q; Yang L J Sci Food Agric; 2019 Aug; 99(10):4849-4862. PubMed ID: 31001831 [TBL] [Abstract][Full Text] [Related]
8. Antioxidative defense mechanisms controlled by Nrf2: state-of-the-art and clinical perspectives in neurodegenerative diseases. Lim JL; Wilhelmus MM; de Vries HE; Drukarch B; Hoozemans JJ; van Horssen J Arch Toxicol; 2014 Oct; 88(10):1773-86. PubMed ID: 25164826 [TBL] [Abstract][Full Text] [Related]
9. Nrf2-induced antioxidant protection: a promising target to counteract ROS-mediated damage in neurodegenerative disease? de Vries HE; Witte M; Hondius D; Rozemuller AJ; Drukarch B; Hoozemans J; van Horssen J Free Radic Biol Med; 2008 Nov; 45(10):1375-83. PubMed ID: 18824091 [TBL] [Abstract][Full Text] [Related]
10. Effects of inhibiting antioxidant pathways on cellular hydrogen sulfide and polysulfide metabolism. Olson KR; Gao Y Free Radic Biol Med; 2019 May; 135():1-14. PubMed ID: 30790656 [TBL] [Abstract][Full Text] [Related]
11. Mitochondrial damage-associated molecular patterns stimulate reactive oxygen species production in human microglia. Nasi M; De Gaetano A; Bianchini E; De Biasi S; Gibellini L; Neroni A; Mattioli M; Pinti M; Lo Tartaro D; Borella R; Mattioli AV; Chester J; Melegari A; Simone AM; Ferraro D; Vitetta F; Sola P; Cossarizza A Mol Cell Neurosci; 2020 Oct; 108():103538. PubMed ID: 32828963 [TBL] [Abstract][Full Text] [Related]
12. Hydrogen Sulfide Reverses LPS-Induced Behavioral Deficits by Suppressing Microglial Activation and Promoting M2 Polarization. Kumar M; Arora P; Sandhir R J Neuroimmune Pharmacol; 2021 Jun; 16(2):483-499. PubMed ID: 32676889 [TBL] [Abstract][Full Text] [Related]
13. Control of Neuroinflammation through Radiation-Induced Microglial Changes. Boyd A; Byrne S; Middleton RJ; Banati RB; Liu GJ Cells; 2021 Sep; 10(9):. PubMed ID: 34572030 [TBL] [Abstract][Full Text] [Related]
14. Potential role of sulfur-containing antioxidant systems in highly oxidative environments. Mukwevho E; Ferreira Z; Ayeleso A Molecules; 2014 Nov; 19(12):19376-89. PubMed ID: 25429562 [TBL] [Abstract][Full Text] [Related]
15. Oxidative stress, mitochondrial dysfunction and cellular stress response in Friedreich's ataxia. Calabrese V; Lodi R; Tonon C; D'Agata V; Sapienza M; Scapagnini G; Mangiameli A; Pennisi G; Stella AM; Butterfield DA J Neurol Sci; 2005 Jun; 233(1-2):145-62. PubMed ID: 15896810 [TBL] [Abstract][Full Text] [Related]
16. Regulation of Microglial Functions by Purinergic Mechanisms in the Healthy and Diseased CNS. Illes P; Rubini P; Ulrich H; Zhao Y; Tang Y Cells; 2020 Apr; 9(5):. PubMed ID: 32365642 [TBL] [Abstract][Full Text] [Related]
17. Protective mechanisms of sulfur against arsenic phytotoxicity in Brassica napus by regulating thiol biosynthesis, sulfur-assimilation, photosynthesis, and antioxidant response. Bano K; Kumar B; Alyemeni MN; Ahmad P Plant Physiol Biochem; 2022 Oct; 188():1-11. PubMed ID: 35963049 [TBL] [Abstract][Full Text] [Related]
18. The Role of Osteopontin in Microglia Biology: Current Concepts and Future Perspectives. Rosmus DD; Lange C; Ludwig F; Ajami B; Wieghofer P Biomedicines; 2022 Apr; 10(4):. PubMed ID: 35453590 [TBL] [Abstract][Full Text] [Related]
19. Mitochondrial function and redox control in the aging eye: role of MsrA and other repair systems in cataract and macular degenerations. Brennan LA; Kantorow M Exp Eye Res; 2009 Feb; 88(2):195-203. PubMed ID: 18588875 [TBL] [Abstract][Full Text] [Related]
20. The emerging key role of reactive sulfur species in abiotic stress tolerance in plants. Alvi AF; Iqbal N; Albaqami M; Khan NA Physiol Plant; 2023; 175(3):e13945. PubMed ID: 37265249 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]