BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 37549803)

  • 1. Conformational change in an engineered biliverdin-binding cyanobacteriochrome during the photoconversion process.
    Takeda Y; Ohtsu I; Suzuki T; Nakasone Y; Fushimi K; Ikeuchi M; Terazima M; Dohra H; Narikawa R
    Arch Biochem Biophys; 2023 Sep; 745():109715. PubMed ID: 37549803
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Crucial Residue for Tuning Thermal Relaxation Kinetics in the Biliverdin-binding Cyanobacteriochrome Photoreceptor Revealed by Site-saturation Mutagenesis.
    Suzuki T; Yoshimura M; Arai M; Narikawa R
    J Mol Biol; 2024 Mar; 436(5):168451. PubMed ID: 38246412
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Introduction of reversible cysteine ligation ability to the biliverdin-binding cyanobacteriochrome photoreceptor.
    Suzuki T; Yoshimura M; Hoshino H; Fushimi K; Arai M; Narikawa R
    FEBS J; 2023 Oct; 290(20):4999-5015. PubMed ID: 37488966
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Novel cyanobacteriochrome photoreceptor with the second Cys residue showing atypical orange/blue reversible photoconversion.
    Hoshino H; Narikawa R
    Photochem Photobiol Sci; 2023 Feb; 22(2):251-261. PubMed ID: 36156209
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Protein Engineering of Dual-Cys Cyanobacteriochrome AM1_1186g2 for Biliverdin Incorporation and Far-Red/Blue Reversible Photoconversion.
    Kuwasaki Y; Miyake K; Fushimi K; Takeda Y; Ueda Y; Nakajima T; Ikeuchi M; Sato M; Narikawa R
    Int J Mol Sci; 2019 Jun; 20(12):. PubMed ID: 31208089
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cyanobacteriochromes: photoreceptors covering the entire UV-to-visible spectrum.
    Fushimi K; Narikawa R
    Curr Opin Struct Biol; 2019 Aug; 57():39-46. PubMed ID: 30831380
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An Engineered Biliverdin-Compatible Cyanobacteriochrome Enables a Unique Ultrafast Reversible Photoswitching Pathway.
    Tachibana SR; Tang L; Zhu L; Takeda Y; Fushimi K; Ueda Y; Nakajima T; Kuwasaki Y; Sato M; Narikawa R; Fang C
    Int J Mol Sci; 2021 May; 22(10):. PubMed ID: 34065754
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Protein-chromophore interactions controlling photoisomerization in red/green cyanobacteriochromes.
    Rockwell NC; Moreno MV; Martin SS; Lagarias JC
    Photochem Photobiol Sci; 2022 Apr; 21(4):471-491. PubMed ID: 35411484
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A new type of dual-Cys cyanobacteriochrome GAF domain found in cyanobacterium Acaryochloris marina, which has an unusual red/blue reversible photoconversion cycle.
    Narikawa R; Enomoto G; Ni-Ni-Win ; Fushimi K; Ikeuchi M
    Biochemistry; 2014 Aug; 53(31):5051-9. PubMed ID: 25029277
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A biliverdin-binding cyanobacteriochrome from the chlorophyll d-bearing cyanobacterium Acaryochloris marina.
    Narikawa R; Nakajima T; Aono Y; Fushimi K; Enomoto G; Ni-Ni-Win ; Itoh S; Sato M; Ikeuchi M
    Sci Rep; 2015 Jan; 5():7950. PubMed ID: 25609645
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cyanobacteriochromes from Gloeobacterales Provide New Insight into the Diversification of Cyanobacterial Photoreceptors.
    Rockwell NC; Lagarias JC
    J Mol Biol; 2024 Mar; 436(5):168313. PubMed ID: 37839679
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Phytochromes and Cyanobacteriochromes: Photoreceptor Molecules Incorporating a Linear Tetrapyrrole Chromophore.
    Fushimi K; Narikawa R
    Adv Exp Med Biol; 2021; 1293():167-187. PubMed ID: 33398813
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A far-red cyanobacteriochrome lineage specific for verdins.
    Moreno MV; Rockwell NC; Mora M; Fisher AJ; Lagarias JC
    Proc Natl Acad Sci U S A; 2020 Nov; 117(45):27962-27970. PubMed ID: 33106421
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Point (S-to-G) Mutations in the W(S/G)GE Motif in Red/Green Cyanobacteriochrome GAF Domains Enhance Thermal Reversion Rates.
    Jang J; Reed PMM; Rauscher S; Woolley GA
    Biochemistry; 2022 Jul; 61(14):1444-1455. PubMed ID: 35759789
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Distinctive Properties of Dark Reversion Kinetics between Two Red/Green-Type Cyanobacteriochromes and their Application in the Photoregulation of cAMP Synthesis.
    Fushimi K; Enomoto G; Ikeuchi M; Narikawa R
    Photochem Photobiol; 2017 May; 93(3):681-691. PubMed ID: 28500699
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Color Tuning in Red/Green Cyanobacteriochrome AnPixJ: Photoisomerization at C15 Causes an Excited-State Destabilization.
    Song C; Narikawa R; Ikeuchi M; Gärtner W; Matysik J
    J Phys Chem B; 2015 Jul; 119(30):9688-95. PubMed ID: 26115331
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cyanobacteriochrome Photoreceptors Lacking the Canonical Cys Residue.
    Fushimi K; Rockwell NC; Enomoto G; Ni-Ni-Win ; Martin SS; Gan F; Bryant DA; Ikeuchi M; Lagarias JC; Narikawa R
    Biochemistry; 2016 Dec; 55(50):6981-6995. PubMed ID: 27935696
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fluorescence Properties of a Novel Cyanobacteriochrome GAF Domain from
    Wu XJ; Yang H; Sheng Y; Zhu YL; Li PP
    Int J Mol Sci; 2018 Aug; 19(8):. PubMed ID: 30071622
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Red-shifted red/green-type cyanobacteriochrome AM1_1870g3 from the chlorophyll d-bearing cyanobacterium Acaryochloris marina.
    Narikawa R; Fushimi K; Ni-Ni-Win ; Ikeuchi M
    Biochem Biophys Res Commun; 2015 May; 461(2):390-5. PubMed ID: 25892514
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Photoconversion changes bilin chromophore conjugation and protein secondary structure in the violet/orange cyanobacteriochrome NpF2164g3' [corrected].
    Lim S; Rockwell NC; Martin SS; Dallas JL; Lagarias JC; Ames JB
    Photochem Photobiol Sci; 2014 Jun; 13(6):951-62. PubMed ID: 24745038
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.